期刊文献+

节点剩余能量均衡的机会网络路由机制 被引量:6

Node residual energy balanced routing mechanism for opportunistic networks
下载PDF
导出
摘要 机会网络中的节点能量受限且难以补充,其能量消耗情况影响着整个网络的生命周期和性能。针对社区机会网络中部分活跃节点频繁转发数据所导致的能量消耗过快问题,提出一种节点剩余能量均衡的机会网络路由机制,根据节点剩余能量及其在网络中的活跃程度感知其综合转发能力,进而合理地选择下一跳节点,有效减少不必要的转发次数,均衡网络负载。数值结果表明,所提出的机制能够在保证网络投递率的同时均衡网络能耗,延长网络生命周期。 In opportunistic networks, the node energy is limited and hard to recharge, and the energy con- sumption has a determinant impact on the network lifetime and performance. To solve the problem that socially popular nodes may quickly deplete their energy resources and consequently not participate in the routing process, the node activity and residual-energy are exploited to evaluate the comprehensive forwarding ability, and then an node residual energy balanced routing mechanism (NREB) for opportunistic networks is introduced. The NREB saves energy by rationally choosing the next-hop node to avoid unnecessary forwarding, which can also balance the network overhead. Simulation results show that the proposed mechanism can ensure the deliv- ery ratio while balancing the energy consumption between nodes and thus to prolong the network lifetime.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第8期1894-1901,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61371097) 重庆市自然科学重点基金(CSTC2013JJB40001 CSTC2013JJB40006) 重大专项(2013ZX03001007)资助课题
关键词 机会网络 节点能耗 剩余能量 综合效用 opportunistic networks node energy consumption residual-energy comprehensive ability
  • 相关文献

参考文献22

  • 1Daly E M, Haahr M. The challenges of disconnected delay-toler- ant MANETs[J].Ad Hoe Networks, 2010, 8(2) : 241 - 250.
  • 2熊永平,孙利民,牛建伟,刘燕.机会网络[J].软件学报,2009,20(1):124-137. 被引量:324
  • 3Yoon S K, Haas Z J, Kim J H. Tradeoff between energy con sumption and lifetime in Delay-Tolerant mobile network[C]// Proc. of the Military Communications Conference, 2008 : 1 - 7.
  • 4Jun H, Ammar M H, Zegura E W. Power management in delay tolerant networks.- a framework and knowledge-based mecha nisms[C]//Proc, of the SECON, 2005 : 418 - 429.
  • 5Li Y, Jiang Y, Jin D, ct al. Energy-efficient optimal opportunis- tic forwarding for delay-tolerant networks[J]. IEEE Trans. on Vehicular Technology, 2010, 59(9) : 4500 - 4512.
  • 6De Rango F, Amelio S, Fazio P. Enhancements of epidemic rou- ting in delay tolerant networks from an energy perspective[C]// Proc. of the Wireless Communications and Mobile Computing Conference, 2013 : 731 - 735.
  • 7Marfin-Campillo A, Marti R. Energy efficient forwarding mech- anism for wireless opportunistic networks in emergency scenarios[J]. Computer Communications , 2012, 35(14) : 1715 - 1724.
  • 8Altman E, Neglia G, De Pellegrini F, et al. Decentralized sto- chastic control of delay tolerant networks[C]//Proc, of the IN- FOCOM IEEE, 2009:1134 - 1142.
  • 9Li Y, Jiang Y, Jin D, et al. Energy-efficient optimal opportunis- tic forwarding for delay-tolerant networks[J]. IEEE Trans. on Vehicular Technology, 2010, 59(9): 4500-4512.
  • 10Altman E, Bacar T, De Pellegrini F. Optimal monotone for- warding policies in delay tolerant mobile ad-hoc networks[J]. Performance Evaluation, 2010, 67 (4) : 299 - 317.

二级参考文献104

  • 1Hull B, Bychkovsky V, Zhang Y, Chen K, Goraczko M, Miu A, Shih E, Balakrishnan H, Madden S. CarTel: A distributed mobile sensor computing system. In: Proc. of the 4th Int'l Conf. on Embedded Networked Sensor Systems. Boulder: ACM, 2006. 125-138.
  • 2Pan H, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C. Pocket switched networks and human mobility in conference environments. In: Proc. of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking. Philadelphia: ACM. 2005. 244-251.
  • 3Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein D. Energy-Efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In: Proc. of the 10th Int'l Conf. on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2002.96-107. DO1=http://doi.acm.org/10.1145/605397.605408
  • 4Pelusi L, Passarella A, Conti M. Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. Communications Magazine, 2006,44(11): 134-141.
  • 5Conti M, Giordano S. Multihop ad hoe networking: The reality. Communications Magazine, 2007,45(4):88-95.
  • 6Fall K. A delay-tolerant network architecture for challenged Internets. In: Proc. of the 2003 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe: ACM, 2003.27-34.
  • 7Akyildiz IF, Akan B, Chert C, Fang J, Su W. InterPlaNetary Intemet: State-of-the-Art and research challenges. Computer Networks, 2003,43(2):75-112.
  • 8Gupta P, Kumar P. The capacity of wireless networks. IEEE Trans. on Information Theory, 2000,46(2):388-404.
  • 9Grossglauser M, Tse DNC. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. on Networking, 2002, 10(4):477-486.
  • 10Small T, Haas ZJ. The shared wireless infostation model: A new ad hoc networking paradigm (or where there is a whale, there is a way). In: Proc. of the 4th ACM Int'l Symp. on Mobile Ad Hoc Networking. Annapolis: ACM, 2003. 233-244.

共引文献334

同被引文献19

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部