期刊文献+

面向多核任务调度的混合遗传算法 被引量:8

Modified hybrid genetic algorithm for parallel task scheduling of multiprocessors
下载PDF
导出
摘要 多核处理器的并行任务调度一直是研究的热点话题,属于NP-hard问题。针对此问题,本文提出了一种集启发式算法、禁忌搜索算法、模拟退火算法于一体的改进混合遗传算法(modified hybrid genetic algorithm,MHGA)。MHGA改进如下:首先,采用启发式的分层调度来初始化种群,提高初始种群质量;其次,提出基于禁忌搜索(tabu search,TS)的随机编号交叉算子,提高种群的多样性;最后,采用基于模拟退火(simulated annealing,SA)的变异,提高个体质量。实验结果表明,与其他遗传算法(genetic algorithm,GA)相比,MHGA可以得到更小的任务调度时间和更快的最优解搜索能力。 Parallel task scheduling of multiprocessors is a hot research topic, and also is a well known NP- hard problem. Focusing on this problem, a modified hybrid genetic algorithm (MHGA) is proposed, in which the heuristic algorithm, tabu search (TS) algorithm and simulated annealing (SA) algorithm are integrated. The modifications of the MHGA include: using the hierarchical scheduling based heuristic method to initialize the population so as to improve the quality of initial population~ employing the TS based random number cross over to enhance the diversity of the population; adopting the SA based mutation to improve the quality of the in dividual. Experimental results show that the MHGA can obtain smaller task scheduling time and have ability to fast search better solution in comparison with other GAs.
作者 姚英彪 王璇
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第8期1928-1935,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61100044) 中国浙江省科技厅科技计划项目(2013C31100)资助课题
关键词 遗传算法 禁忌搜索 模拟退火 并行调度 多核处理器 genetic algorithm (GA) tabu seareh(TS) simulated annealing (SA) parallel scheduling multiprocessor
  • 相关文献

参考文献17

  • 1Lee J, Chung M K, Cho Y G, et al. Mapping and scheduling of tasks and communica-tions on many-core soc under local memory constraint[J]. IEEE Trans. on Computer-aided Design of inte- grated circuits and System, 2013, 32(11) : 1748 - 1761.
  • 2Venugopalan S, Sinnen O. ILP formulations for optimal task scheduling with cornmuni-cation delays on parallel systems[J]. IEEE Trans. on Parallel and Distributed Systems, 2014, (99) : 1 -10.
  • 3Topcuoglu H, Hariri S, Wu M Y. Performance-effective and low-complexity task scheduling for heterogeneous compu-ting[J]. IEEE Trans. on Parallel and Distributed Systems, 2002,13 (3) : 260 - 274.
  • 4Fan M, Quan G. Harmonic-aware multi-core scheduling for fixed- priority real-time systems[J]. IEEE Trans. on Parallel and Dis tributed Systems, 2014, 25(6): 1476-1488.
  • 5兰舟,孙世新.基于关键路径知识的任务调度遗传算法[J].计算机应用,2008,28(2):272-274. 被引量:3
  • 6Chopra N, Singh S. HEFT based workflow scheduling algorithm for cost optimization within deadline in hybrid clouds[C]//Proc. of the 4th International Conference on Computing, Communi- cations and Networking Technologies, 2013 : 1 - 6.
  • 7TabakE K, Cambazoglu B B, Aykanat C. Improving the per- formance of independent task assignment heuristics minmin, maxmin and sufferage[J]. IEEE Trans. on Parallel and Dis- tributed Systems, 2014, 25(5) : 1244 - 1256.
  • 8Omara F A, Arafa M M. Genetic algorithms {or task scheduling problem[J]. Journal of Parallel and Distributed Computing, 2010, 70(1) :13- 22.
  • 9Wen Y, Xu H, Yang J D. A hybrid heuristic genetic algorithm for task scheduling in heterogeneous processor networks [J]. Journal of Parallel and Distributed Computing, 2011, 71 ( 11 ) : 1518 - 1531.
  • 10周双娥,雷辉.基于改进的遗传-模拟退火的有序任务调度算法[J].微电子学与计算机,2006,23(10):62-64. 被引量:10

二级参考文献42

共引文献91

同被引文献75

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部