期刊文献+

混杂系统粒子滤波混合状态估计及故障诊断算法 被引量:5

Hybrid state estimation and fault diagnosis algorithm of hybrid systems using particle filter
下载PDF
导出
摘要 混杂系统同时包含连续动态特性和离散动态特性,并且两种动态相互作用,使其故障诊断变得更加困难。针对此问题,提出了一种混合系统粒子滤波混合状态估计及故障诊断算法,提高了现有方法的适用范围和诊断效率。针对混杂系统受控迁移、自治迁移和随机迁移等特点,首先利用随机混杂自动机对系统离散状态(包括故障)和连续状态进行统一建模,重点对现有基于扩展卡尔曼粒子滤波的连续估计算法进行改进,支持利用在线监测数据来估计混杂系统各类迁移产生的各种离散和连续状态,最后根据离散状态估计结果快速实现故障诊断。通过对典型非线性混杂系统的故障诊断,证明了该方法的有效性。 Hybrid systems are composed of discrete event dynamic systems and continuous time dynamic systems, which interact with each other. It leads to that the fault diagnosis of hybrid systems is particularly dif ficult. In order to expand the scope of application and improve the diagnosis efficiency, a hybrid state estimation based hybrid systems fault diagnosis method is proposed. Considering the controlled migration, the autonomous migration and the stochastic migration of hybrid systems, the discrete states (including fault states) and contin- uous states of the system are modeled based on the stochastic hybrid automaton. The common extended Kalman particle filter based hybrid estimation algorithm is developed so as to be applied in the hybrid estimation of dis crete and continuous states produced by the migrations of hybrid systems. Finally, the fault diagnosis can be a- chieved rapidly according to the estimated result of discrete states. A simulation experiment is employed to con- duct the fault diagnosis on a typical nonlinear hybrid system, and the results indicate that this method is effective.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第8期1936-1942,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61304218) 北京市自然科学基金(3153027)资助课题
关键词 混杂系统 故障诊断 混合状态估计 扩展卡尔曼粒子滤波 hybrid systems fault diagnosis hybrid state estimation extended Kalman particle filter
  • 相关文献

参考文献21

  • 1Arjan V D S, Hans S. An introduction to hybrid dynamical sys- tems[M]. London: Springer, 2000:1-9.
  • 2范帅,柴旭东,李潭.定性定量故障诊断平台中的知识处理方法[J].计算机集成制造系统,2010,16(10):2166-2173. 被引量:2
  • 3韩光臣,孙树栋,司书宾,陈东明.基于模糊概率Petri网系统的故障诊断仿真研究[J].计算机集成制造系统,2006,12(4):520-525. 被引量:13
  • 4Koutsoukos X, Zhao F, Haussecker H, et al. Fault modeling for monitoring and diagnosis of sensor-rich hybrid systems[C]// Proc. of the 40th IEEE Conference on Decision and Control, 2001:793 - 801.
  • 5Yu M, Wang D W, Huang L. Incipient fault diagnosis and prog- nosis for hybrid systems with unknown mode changes[C] // Proc. of the Prognostics ~ System Health Management Con- ference, 2010 : 1 - 7.
  • 6Mohammadi R, Hashtrudi-Zad S, Khorasani K. Diagnosis of hybrid systems: part 2-residual generator selection and diagnosis in the presence of unreliable residual generators[C]//Proc, of the IEEE International Conference on Systems, Man, and Cy- bernetics, 2009 : 3340 - 3345.
  • 7Siamak T, Sun X H. Hybrid system state tracking and fault de- tection using particle filters[J]. IEEE Trans. on Control Sys- tems Technology ,2006, 14(6) : 1078 - 1087.
  • 8Liu Y T, Jiang J P. Fault diagnosis and prediction of hybrid sys tern based on particle filter algorithm[C]//Proc, of the 1EEE International Conference on Automation and Logistics, 2008: 1491 - 1495.
  • 9Michael W H, Brian C W. Mode estimation of probabilistic hy brid systems[C]//Proc, of the Hybrid Systems : Computation and Control, 2002:263 -266.
  • 10Salahshoor K, Samadi M F, Safari E. Particle filtering mode estimation of hybrid systems based on a novel weighted mode activation record approaeh[C]//Proc, of the 1EEE Interna- tional Conference on Control and Automation ,2009:430 - 434.

二级参考文献26

  • 1韩光臣,孙树栋,司书宾,付平.复杂系统故障传播与故障分析模型研究[J].计算机集成制造系统,2005,11(6):794-798. 被引量:18
  • 2王鹏.多学科虚拟样机系统高层建模和仿真语言研究[D].北京:北京航空航天大学,2006.
  • 3FAN Shuai, LI Bohu, CHAI Xudong, et al. Research on complex system quantitative and qualitative synthetic M&S plat form[C]//Proceedings of the 2009 Summer Computer Simula tion Conference. Istanbul, Turkey: SCS Press, 2009 : 208-215.
  • 4FAN Shuai, LI Bohu, CHAI Xudong, et al. Research on quantitative and qualitative synthetic M&S language in complex system[C]//Proeeedings of the Asian Simulation Conference 2009. Shiga, Japan:JSST Press,2009.
  • 5LI Tan, CHAI Xudong, FAN Shuai, et al. Research on qualitative modeling and qualitative/quantitative joint simulation of complex system[C]//Proceedings of the Asian Simulation Conference 2009. Shiga, Japan:JSST Press,2009.
  • 6CHOWDHURY D R.Modeling and simulation of combinational digit circuits using Petri nets[J].International Journal System Science,1990,21(8):1503-1513.
  • 7SUN Jing,QIN Shiyin,SONG Yonghua.Fault diagnosis of electric power systems based on fuzzy Petri nets[J].IEEE Transactions on Power Systems,2004,19(4):2053-2058.
  • 8GAO Meimei,ZHOU Mengchu,HUANG Xiaoguang,et al.Fuzzy reasoning Petri nets[J].IEEE Transactions on Systems,2003,33(3):341-323.
  • 9AGHASARYAN A,FABRE E,BENVENISTE A.Fault detection and diagnosis in distributed systems:an approach by partially stochastic Petri nets[J].Discrete Event Dynamic Systems:Theory and Applications,1998,8 (2):203-231.
  • 10Rao K D, Gopika V,Rao V S,et al. Dynamic fault tree analysisusing Monte Carlo simulation in probabilistic safety assessment [J].Reliability Engineering & System Safety,2009, 94(4) : 872 - 883.

共引文献39

同被引文献29

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部