1Talwani M, Ewing M. Rapid computation of gravitational attraction ofthree dimensional bodies of arbitrary shape. Geophysics, 1960, 25: 203~225
2Barnett C. T. Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three dimensional body. Geophysics, 1976, 41: 1353~1364
3Rene R M. Gravity inversion using open, reject, and "shape to the anomaly" fill criteria. Geophysics, 1986, 51: 988~994
4Rechardson R M, MacInnes S C. The inversion of gravity data into three dimensional polyhedral models. J. Geophys. Res., 1989, 94: 7555~7562
5Silva J B C, Hohmann G W. Nonlinear magnetic inversion using arandom search method. Geophysics, 1983, 48: 1645~1658
6Smith M S, Scales J A, Fischer T L. Global search and geneticalgorithms. The Leading Edge of Exploration, 1992, 11(1): 22~26
7Barbosa V C F, Silva J B C. Generalized compact gravity inversion. Geophysics, 1994, 59: 57~68
8Billings S, Kennett B, Sambridge M. Hypocentre location: genetic algorithms incorporating problem specific information. Geophys. J. International, 1994, 118: 693~706
9Bear G W, Al Shukri H J, Rudman A J. Linear inversion of gravity data for 3 D density distributions. Geophysics, 1995, 60: 1354~1364
10Li Y, Oldenburg D W. 3 D inversion of magnetic data. Geophysics, 1996, 61: 394-408