期刊文献+

CO_2浓度升高对湖泊浮游藻类与浮游细菌耦合关系的影响 被引量:6

Effects of elevated CO_2 concentration on the coupling relationship between planktonic algae-planktonic bacteria
下载PDF
导出
摘要 采用控制空气CO2浓度的围隔体系(P1:400×10-6体积分数,下同,P2:800×10-6,P3:1200×10-6),在不同空气CO2浓度条件下,分析水华微囊藻对CO2的同化作用和异养细菌对藻源性有机碳的异化作用,以及二者出峰时间耦合关系的变化.结果表明,CO2浓度升高能够促进水华微囊藻的生长,P1、P2和P3条件下藻的数量分别达9.4×106,1.1×107,1.5×107cells/m L.同时高浓度CO2降低了藻细胞内酯酶活性但并未影响藻达到峰值所需时间.在不同CO2浓度水平下,浮游细菌达到峰值的时间顺序是P1(12d)<P2(14d)<P3(20d),细菌最高密度分别达到2.10×106cells/m L(P1),1.94×106cells/m L(P2)和1.70×106cells/m L(P3).前7d浮游细菌的生长速度是v P3>v P2>v P1,细菌活性是P3>P2>P1.高CO2浓度条件下,浮游藻类呈现高生物量和低活性的状态,而浮游细菌呈现低生物量和高活性的状态,反映出CO2浓度的改变对同化和异化作用不同的影响机制.因此,CO2浓度升高后导致的浮游藻类生物量的积累可能无法通过促进浮游细菌的生长达到有效转化. CO2 fixation by planktonic algae and subsequent assimilation of algae-derived organics by planktonic bacteria, and the coupling relationship between them were studied at elevated CO2 levels. The elevated CO2 levels were achieved in three sets of mesocoms, each having a volume faction of 400× l0-6 (P 1), 800× 10 6 (P2), and 1200× 10 6 (P3), respectively. Results showed that elevated CO2 supplies promoted algal growth, leading to biomass of 9.4×l0^6cells/mL, 1.1× 10^7cells/mL, and 1.5× 10^7cells/mL at P1, P2, and P3 levels. Algal esterase activity was also reduced at these CO2 levels, but the time to reach peak biomass was not affected. For planktonic bacteria in the same mesocoms, they reached peak biomass on day 12 (P1), 14 (P2), and 20 (P3), leading to cell density of 2.10xl0%ells/mL (P1), 1.94×10^6cells/mL (P2), and 1.70× 10^6cells/mL (P3). In the first seven days, the growth rate of planktonic bacteria correlated with increasing CO2 levels: vP3〉vP2〉vP1, as was the bacterial activity. At elevated CO2 levels, algae showed high biomass with low metabolic activity, while bacterial showed relative low biomass with high metabolic activity; this contrast reflected differences in the response mechanism of algae and bacteria to changes in CO21evels. Therefore, the high biomass resulting from elevated CO2under global change may not effectively transform into bacterial biomass.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2015年第7期2209-2216,共8页 China Environmental Science
基金 国家自然科学基金项目(31370508) 太湖“湖泛”与水华灾害应急处置技术研究及工程示范(2012ZX07101-010) 湖泊与环境国家重点实验室开放研究基金(2012SKL005) 中国科学院南京地理与湖泊研究所135规划前沿交叉项目(NIGLAS2012135011)
关键词 CO2 浮游藻类 浮游细菌 耦合关系 湖泊 全球变化 CO2 phytoplankton bacterioplankton coupling relationship;lake;global change
  • 相关文献

参考文献4

二级参考文献50

  • 1陈雄文,高坤山.赤潮藻中肋骨条藻的光合作用对海水pH和N变化的响应[J].水生生物学报,2004,28(6):635-639. 被引量:12
  • 2石岩峻,胡晗华,马润宇,丛威,蔡昭铃.不同氮磷水平下微小原甲藻对营养盐的吸收及光合特性[J].过程工程学报,2004,4(6):554-560. 被引量:24
  • 3国家海洋局.海洋监测规划(HY003.4-91)[M].北京:海洋出版社,1991.205-282.
  • 4BLUMTHALER M,AMBACH W.Indication of increasing solar ultraviolet-B radiation flux in alpine regions[J].Science,1990,248(4952):206-208.
  • 5KERRJ B,MCELROY C T.Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion[J].Science,1993,262(5136):1032-1034.
  • 6LUBIN D,JENSEN E H.Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends[J].Nature,1995,377(6551):710-713.
  • 7SMITH S V.Marine macrophytes as a global carbon sink[J].Science.1981,211(4484):828-840.
  • 8RITSCHARD R I_ Marine algae as a CO2 sink[J].Water,Air and Soil Pollution.1992,64(1):289-303.
  • 9GAO K,ARUGA Y,ASADA K,et al.Influence of enhanced all on growth and photosynthesis of the red algae Gacilaria sp.and G.Cilensis[J].J Appl Phycol,1993,5(6):563-571.
  • 10GAO K,MCKINLEY K R Use of macroalgae for marine biomass production and CO2 remediation:a review[J].J Appl Phycol,1994,6(1):45-60.

共引文献75

同被引文献121

引证文献6

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部