期刊文献+

修正非线性Schrdinger方程的变号解

Sign-changing solutions for modified nonlinear Schrodinger equation
原文传递
导出
摘要 本文考虑下列修正非线性Schrodinger方程:{△u+1/2△u2-V(x)+λ|u|p+2 u=0 x∈R N u(x)→0, x→∞此方程出现在数学物理的一些模型中,数学上也有很多讨论.形式上方程有变分结构,但是很难找到合适的工作空间使得相应的泛函同时具有光滑性和满足紧性条件.本文引入p-Laplace项扰动,扰动问题的解作为原问题的近似解,并得到适当的估计,从而转向极限后得到原问题的解.本文证明方程有无穷多变号解满足积分约束∫R N|u|p dx=1,这时方程中常数λ作为Lagrange乘子出现. In this paper, we consider the following modified nonlinear Schrodinger equation: {△u+1/2△u2-V(x)+λ|u|p+2 u=0 x∈R N u(x)→0, x→∞ This type of equations have been involved in models of mathematical physics, and mathematical work has been done extensively in recent years. The problem has a formal variational structure, but it is difficult to find a suitable space in which the variational functional possesses both smoothness and compactness properties. We introduce a p-Laplacian perturbation approach, obtain solutions of the perturbed problems as approximate solutions of the original problem, and original problem. ∫R N|u|p dx=1, where establish suitable estimates for these solutions. Then we pass limits to get solutions of the prove the existence of infinitely many sign-changing solutions with the integral constraint λ appears as a Lagrangian multiplier
出处 《中国科学:数学》 CSCD 北大核心 2015年第8期1319-1336,共18页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171171 11271331 11361077和11271201) 联大青年学者培养资助项目
关键词 修正非线性 SCHRODINGER方程 积分约束 变号解 扰动方法 modified nonlinear Schrodinger equation, integral constraint, sign-changing solution, perturbation method
  • 相关文献

参考文献19

  • 1Brihaye Y, Hartmann B. Solitons on nanotubes and fullerenes as solutions of a modified nonlinear Schr6dinger equation. In: Advances in Soliton Research. Hauppauge, NY: Nova Science Publishers, 2006, 135-151.
  • 2Brizhik L, Eremko A, Piette B, et al. Static solutions of a D-dimensional modified nonlinear Schr6dinger equation. Nonlinearity, 2003, 16:1481-1497.
  • 3Brfill L, Lange H. Solitary waves for quasilinear Schr6dinger equations. Expo Math~ 1986, 4:278-288.
  • 4Hartmann B, Zakrzewski W J. Electrons on hexagonal lattices and applications to nanotubes. Phys Rev B, 2003, 68: 184-302.
  • 5Kurihura S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50:3262-3267.
  • 6Liu J Q, Wang Y, Wang Z Q. Solutions for quasilinear SchrSdinger equations via the Nehari method. Comm Partial Differential Equations, 2004, 29:879-901.
  • 7Liu J Q, Wang Y, Wang Z Q. Soliton solutions for quasilinear SchrSdinger equations, II. J Differential Equations, 2003, 187:473-493.
  • 8Colin M, Jeanjean L. Solutions for a quasilinear Schr6inger equation, a dual approach. Nonlinear Anal, 2004, 56: 213-226.
  • 9Liu X Q, Liu J Q, Wang Z Q. Quasilinear elliptic equations via perturbation method. Proc Amer Math Soc, 2013, 141:253-263.
  • 10Liu J Q, Wang Z Q. Multiple solutions for quasilinear elliptic equations with a finite potential well. J Differential Equations, 2014, 257:2874-2899.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部