期刊文献+

模拟电路单故障与多故障诊断的提升小波和RBF方法

Analog Circuit Single and Multiple Faults Diagnosis Based on Lifting Wavelet and RBF Neural Networks
下载PDF
导出
摘要 为了更高效、更准确地诊断模拟电路的单故障和多故障,提出了提升小波和RBF神经网络相结合的方法。该方法用提升小波系数表征故障电路的特征,训练RBF神经网络,将训练好的神经网络作为分类器,对故障电路进行诊断。通过对比,提出的提升小波方法诊断效果明显优于传统小波,准确率达到99.2%,用时更长。结果表明,基于提升小波和RBF神经网络的模拟电路单故障与多故障诊断方法可以有效地提取故障电路的特征并准确快速地对故障进行分类。 In order to diagnosis the analog circuits of single fault and multiple faults more efficiently and accurately,an approach based on lifting wavelet (LW) and RBF neural networks is proposed.The impulse response signal of circuit under test (CUT) is sampled and decomposed to form fault features,training RBF neural networks as classifier to di-agnose the CUT.The filter experiment has proved that presented approach can diagnose single fault and multiple faults of CUT more efficiently. Compared with the traditional wavelet diagnosis rate of 96.8%,diagnosis rate of lifting wave-let can reach 99.2% and with less time.The results showed that analog circuit single and multiple faults diagnosis using lifting wavelet and RBF neural networks can effectively extract the fault features and carry on the diagnosis for the fault accurately and rapidly.
出处 《长春理工大学学报(自然科学版)》 2015年第3期28-32,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省自然科学基金项目(No.201115160)
关键词 模拟电路 单故障诊断 多故障诊断 提升小波 RBF神经网络 analog circuit single fault diagnosis multiple faults diagnosis lifting wavelet RBF neural network
  • 相关文献

参考文献14

二级参考文献103

共引文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部