期刊文献+

基于奇异值分解的灰度图像脆弱水印认证系统 被引量:1

A Grayscale Images Fragile Watermark Authentication System Based on the Singular Value Decomposition
下载PDF
导出
摘要 提出一种基于奇异值分解的灰度图像脆弱水印认证系统,此系统将原始图像分成8×8的小块,每个小块进行DCT后,提取其低频分量信息,生成水印图像,再使用基于奇异值的算法进行水印嵌入,并对原始图像和嵌入水印后的图像生成认证码,通过公钥加密后传输.实验结果表明,该系统在认证阶段能对已经篡改和攻击的图像进行篡改锁定. The paper proposes a grayscale images fragile watermark authentication system based on the decomposition of the singular value.The system divides the grayscale image into small 8×8pieces.Each small piece is made into DCT transform and extracted low frequencies to form the watermark.Then,the system uses the decomposition of the singular value to embed watermark,hash algorithm with original image and watermarked image to form authentication codes.In the authentication phase,the image which has been tampered and attacked can be locked from tampering.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2015年第3期385-388,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(61178068) 国家科技支撑计划项目(35G1118) 四川省教育厅科研项目(14ZB0223)
关键词 脆弱水印 认证 篡改锁定 奇异值分解 灰度图像 fragile watermark authentication lock tampering
  • 相关文献

参考文献9

  • 1Pradosh Bandyopadhyay.Color Image Authentication through a Dynamic Fragile Watermarking Framework[J].International Conference on Methods and Modelsin Computer Science,2009(3):160-165.
  • 2Zhu B B,Swanson M D,Tewfik A H.When Seeing Isn't Believe[J].IEEE Signal Processing Magazine,2004,21(2):40-49.
  • 3Cox I J,Miller M L,Bloom J.A Digital Watermarking[J].New York:Academic Press,2002.
  • 4CoxIJ MillerML BloomJA.数字水印[M].北京:电子工业出版社,2003..
  • 5VanSchyndel R G,Tirkel A Z,Osborne C F.A Digital Watermark[J].International Conference on Image Processing,1994(2):86-90.
  • 6徐昌进,陈大学.具有时滞的Logistic模型的分支问题的频域分析(英文)[J].重庆师范大学学报(自然科学版),2012,29(5):56-62. 被引量:2
  • 7李太白,唐万梅.一种改进的SVM多类分类算法在入侵检测中的应用[J].重庆师范大学学报(自然科学版),2012,29(5):63-66. 被引量:8
  • 8李志梅,肖德贵.快速模糊C均值聚类的图像分割方法[J].计算机工程与应用,2009,45(12):187-189. 被引量:25
  • 9赵欣怡,吴胜兵.基于奇异值的数字水印[D].南昌:南昌航空大学信息工程学院,2012.

二级参考文献37

  • 1Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J].J Cybemet,1973,3(3): 32-57.
  • 2Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981.
  • 3Jan A K,Murtym N,Flyrm P J.Data clustering:A review[J].ACM Computer Survey, 1999,31(3 ) :264-323.
  • 4Young WonLin,Lee S U.On the color image segmentation algorithm based on the thresh holding and the fuzzy C_means techniques[J].Pattern Recognitions, 1990,23(6) :935-952.
  • 5Ke J.Fast accurate fuzzy clustering through reduced precision[D]. University of South Florida, 1999.
  • 6Hung Ming_Chuan,Yang Don_Lin.An efficient fuzzy C-means clustering algorithm [C]//Proceedings of IEEE International Conference on Data Mining,SanJose,2001:225-232.
  • 7Tolias Y A,Panas S M.Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions[J].IEEE Trans Syst, Man, Cybernet Part, 1998,28 (3) : 359-369.
  • 8Krishnapuran,Keller J M.A possibilistic c-means algorithm[J].IEEE Trans Fuzzy Syst, 1993(2): 100-112.
  • 9Wang X,Wang Y,Wang L.Improving fuzzy c-means clustering based on feature weight learning[J].Pattern Recognition Lett,2004, 25 : 1123-1132.
  • 10Zhang Dao-qiang,Chen Song-can.A novel kernelized fuzzy C- means algorithm with application on medical image segmentation[J]. Artificial Intelligence in Medicine, 2004,32 : 37-50.

共引文献60

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部