期刊文献+

新型药物缓释尿道支架修复创伤性尿道狭窄 被引量:1

New biodegradable paclitaxel-eluting stents for repair of traumatic urethral stricture
原文传递
导出
摘要 目的 评估新型生物可降解紫杉醇缓释尿道支架修复创伤性尿道狭窄的可行性和有效性.方法 选取25只成年新西兰雄兔,按随机数字表法抽取其中20只为实验组,利用自行设计的爆炸装置成功构建创伤性尿道狭窄动物模型后,外科手术直视下置入生物可降解紫杉醇尿道支架.其余5只为正常对照组.分别在术后4,8,12周时通过尿道镜、逆行尿道造影和组织学检查评估药物支架修复创伤性尿道狭窄的效果.结果 实验组所有支架均在直视下成功置入原狭窄段尿道,术后未发生支架移位、结石形成.尿道镜观察显示,实验组8周时可见支架已经部分降解,12周时支架大部分已经降解,并且随尿液排出,修复后的尿道黏膜肉眼观察与正常尿道黏膜无明显差异.逆性尿道造影显示,实验组修复后的尿道腔恢复通畅,未见狭窄征象.组织学结果显示,实验组药物支架修复后的尿道上皮与正常结构基本一致,未见瘢痕形成征象.结论 新型生物可降解紫杉醇缓释尿道支架具有良好的生物相容性,能更有效地修复兔创伤性尿道狭窄. Objective To evaluate the feasibility and effect of the new biodegradable paclitaxel-eluting stents in treatment of traumatic urethral stricture.Methods Twenty-five adult New Zealand rabbits were divided into study group (n =20) and control group (n =5) according to the random number table.In study group,rabbit models of traumatic urethral stricture were developed by self-designed explosive devices.All the stents were inserted under direct vision.Reparative results were evaluated by urethroscopy,retrograde urethrogram and histological examinations at postoperative 4,8,and 12 weeks.Results In study group all the stents were smoothly inserted into the strictured urethra without the occurrence of stent migration and lithogenesis.Urethroscopy showed that the stents in study group were partially degraded at 8 weeks,mostly degraded at 12 weeks and discharged with the urine.And from the naked eye,there was no distinct difference between the repaired and normal urinary mucosa.Retro^ade urethrogram demonstrated the stents restored urethral patency.Histological examinations showed the stents minimized stent-related inflammatory reactions,uroepithelial hyperplasia and scar formation.Conclusion New biodegradable paclitaxel-eluting stents exhibiting good biocompatibility are more effective to repair urethral stricture in rabbits.
出处 《中华创伤杂志》 CAS CSCD 北大核心 2015年第7期660-663,共4页 Chinese Journal of Trauma
基金 军队临床高新技术重点资助项目(413DG63J)
关键词 尿道狭窄 创伤和损伤 药物洗脱支架 Urethral stricture Wounds and injuries Drug-eluting stents
  • 相关文献

参考文献14

  • 1Lee Y J, Kim SW. Current management of urethral stricture [ J ]. Korean J Urol, 2013, 54(9) :561-569.
  • 2Liatsikos E, Kallidonis P, Stolzenburg JU, et al. Ureteral stents : past, present and future [ J ]. Expert Rev Med Devices, 2009, 6 (3) :313-324.
  • 3Cui T, Terleeki R, Atala A. Tissue engineering in urethral recon- struction[J]. Arch Esp Urol, 2014, 67(1) :29-34.
  • 4张秉鸿,符伟军,洪宝发,王晓雄,高江平.爆炸伤所致尿道狭窄动物模型的建立[J].中华创伤杂志,2007,23(3):225-228. 被引量:7
  • 5De Vocht TF, van Venrooij GE, Boon TA. Self-expanding stent insertion for urethral strictures: a 10-year follow-up[ J]. BJU Int, 2003, 91 (7) :627-630.
  • 6Papatsoris AG, El-Husseiny T, Sawada Y, et al. Treating blad- der-outflow obstruction with thermo-expandable prostate metal stents[ J]. Expert Rev Med Devices, 2009, 6(4) :357-363.
  • 7Choi EK, Song HY, Shin JH, et al. Management of recurrent ure- thral strictures with covered retrievable expandable nitinol stents: long-term results [ J ]. A JR Am J Roentgenol, 2007, 189 ( 6 ) : 1517-1522.
  • 8Isotalo T, Talja M, Valimaa T, et al. A bioabsorbable self-ex- pandable, self-reinforced poly-L-lactic acid urethral stent for re- current urethral strictures: long-term results [ J ]. J Endourel, 2002, 16(10) :759-762.
  • 9Fu WJ, Zhang BH, Gao JP, et al. Biodegradable urethral stent in the treatment of post-traumatic urethral strictures in a war wound rabbit urethral model[J]. Biomed Mater, 2007, 2(4) :263-268.
  • 10Isotalo T, Nuutinen JP, Vaajanen A, et al. Biocompatibility and implantation properties of 2 differently braided, biodegradable, self-reinforced polylactic acid urethral stents: an experimental. study in the rabbit[J]. J Urol, 2005, 174(6) :2401-2404.

二级参考文献12

  • 1Cilento BG, Retie AB, Atala A. Urethral reconstriction using a polymer mesh. J Urel, 1995, 153:371A.
  • 2Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. J Urel, 1999, 54:407-410.
  • 3Andersen HL, Duch BU, Nielsen JB, et al. An experimental model for stricture studies in the anterior urethra of the male rabbit. Urol Res, 2003, 31:363-367.
  • 4Choma TJ, Poppas DP, Presberg HJ, et al. CO2 laser urethroplasy in the rabbit: a preclinical model. Lasers Surg Med, 1992, 12:639 -644.
  • 5Kirsch AJ, Chang DT, Kayton ML, et al. Sutureless rabbit bladder mucnsa patch graft urethroplasty using diode laser and solder. J Urol,1995, 153: 1303 - 1307.
  • 6Steed DL. The role of growth factors in wound healing. Surg Clin North Am, 1997, 77:575 -586.
  • 7McAninch JW, Laing FC, Jeffrey RB. Sonourethrography in the evaluation of urethral stricture: a preliminary report. J Urol, 1988, 139:294 - 297.
  • 8Stone MA, Figenshau RS, Clayman RV, et al. Ureteral stricture in the pig (abstract). J Endourel, 1991, 5 Suppl 1 :S63.
  • 9Scherz HC, Kaplan GW, Boychuk DI, et al. Uethral healing in rabbits. J Urol, 1992, 148:708-710.
  • 10Scott TM, Foote J. Early events in stricture formation in the guinea pig urethra. Urol Int, 1980, 35:334 -339.

共引文献6

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部