期刊文献+

干酪乳杆菌对产肠毒素大肠杆菌粘附Caco-2细胞抑制作用的研究 被引量:3

Inhibitory effect of Lactobacillus casei on adhesion of enterotoxigenic Escherichia coli to Caco-2 cells
下载PDF
导出
摘要 为研究干酪乳杆菌(L.casei)对人结肠癌Caco-2细胞的粘附特点及抑制产肠毒素大肠杆菌K88(ETEC K88)粘附Caco-2细胞的能力,本研究将不同浓度的L.casei和ETEC K88与分化完全的Caco-2细胞共培养2 h和4 h后,采用平板计数法和革兰染色法计算每个细胞上粘附菌的个数,评价L.casei的粘附特点及其抑制ETEC K88对Caco-2细胞的粘附能力,并分析其影响因素。结果表明,L.casei与ETEC K88均可以粘附至Caco-2细胞表面,并且随菌液浓度的升高和培养时间的延长,粘附的数量显著增加(p<0.05)。L.casei浓度越高,抑制ETEC K88粘附至细胞表面的能力越强,并与菌液添加顺序有关,但培养时间对其影响不显著(p>0.05)。本研究为L.casei抑菌作用机制的研究提供了实验依据。 The aim of the experiment was to study the adhesion characteristics of Lactobacillus casei to Caco-2 cells, and its inhibitions on adhesion of enterotoxigenic Escherichia coli(ETEC) K88 to Caco-2 cell. The number of bacteria adhered to each cell was calculated after different concentrations of L.casei and ETEC K88 were added to Caco-2 cells simultaneously for 2 hours and 4 hours, respectively. The results indicated that L.casei and ETEC K88 was able to adhere to Caco-2 cells, with the increase of concentrations and incubation time of bacterias, the number of bacterias adhered to each cell increased significantly( p0.05).Moreover, the higher the concentrations of L.casei, the stronger the inhibiting ability on ETEC K88 adhered to the cells, which also associated with the adding order of bacteria. However, the influence of incubation time was not significant( p0.05). In conclusion, adhesive capacity of L.casei to Caco-2 cells depends on the concentration and incubation time, L.casei had the ability to inhibit the adhesion of pathogenic ETEC K88 to Caco-2 cells, the inhibitory ability related to the concentration and adding order of bacteria.
出处 《中国预防兽医学报》 CAS CSCD 北大核心 2015年第7期510-513,共4页 Chinese Journal of Preventive Veterinary Medicine
基金 国家自然科学基金(31372413)
关键词 干酪乳杆菌 产肠毒素大肠杆菌K88 Caco-2细胞 粘附 粘附抑制 Lactobacillus casei ETEC K88 Caco-2 cells adhesion adherence inhibition
  • 相关文献

参考文献13

  • 1Chenoll E, Casinos B, Bataller E, et al. Novel probiotic bifidobacterium bifidum CECT 7366 strain active against the path- ogenic bacterium helicobacter pylori [J]. Appl Environ Microbiol, 2011, 77(4): 1335-1343.
  • 2Natalia A C, Alejandra M L, Galdeano C M, et al. Probiotics: An alternative strategy for combating salmonellosis Immune mechanisms involved [J]. Food Res Int, 2012, 45(2): 831-841.
  • 3Zarate G, De Ambrosini V M, Chaia A P, et al. Some factors affecting the adherence of probiotic Propionibacterium acidipropionici CRL 1198 to intestinal epithelial cells [J]. Can J Microbiol, 2002, 48(5): 449-457.
  • 4Matsuzaki T, Chin J. Modulating immune responses with probiotic bacteria [J]. Immunol Cell Biol, 2000, 78(1): 67-73.
  • 5Jetty N, Sayuti, Chrysanti, et al. An in vitro model for studying the adhesion of Lactobacillus bulgaricus in soyghurt and entero- pathogenic Escherichia coli (EPEC) on HEp-2 cells [J]. J Ind Microbiol Biotechnol, 2012, 6(24): 5142-5146.
  • 6Lin Chien-Ku, Tsai H C, Lin Pei-pei, et al. Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell [J]. Anaerobe, 2008, 14(5): 251-255.
  • 7Solano C, Sesma B, Alvarez M, et al. Virulent strains of Salmonella enteritidis disrupt the epi-thelial barrier of Caco-2 and HEp-2 cells [J]. Arch Microbiol, 2001, 175(1): 46-51.
  • 8Gagnon M, Berner A Z, Chervet N, et al. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion [J]. J Microbiol Methods, 2013, 94(3): 274-279.
  • 9Puerto M, Pichardo S, Angeles J, et al. Comparison of the toxicity induced by microcystin-RR and microcystin-YR in differentiated and undifferentiated Caco-2 cells [J]. Toxicon, 2009, 54(2): 161-169.
  • 10Jankowska A, Laubitz D, Antushevich H, et al. Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells [J]. J Biomed Biotechnol, 2008, 2008: 357964.

同被引文献26

  • 1Nagy B, Fekete P Z. Enterotoxigenic Eschetichia coli in veteri- nary medicine [J]. Int J Med Microbiol, 2005, 295 (6-7): 443- 454.
  • 2Verhelst R, Schroyen M, Buys N, et al. Dietary polyphenols reduce diarrhea in enterotoxigenic Escherichia coli (ETEC) infected post-weaning piglets [J]. Livest Sci, 2014, 160(2): 138- 140.
  • 3Uchenna D O, Michael O, Lissette S R, et al. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation [J]. Mol Genet Metab, 2015, 4(9): 11-18.
  • 4Oeckinghaus A, Hayden M S, Ghosh S. Crosstalk in NF-kappa B signaling pathways [J]. Nat Immunol, 2011, 12(8): 695-708.
  • 5Liou C J, Len W B, Wu S J, et al. Casticin inhibits COX-2 and iNOS expression via suppression of NF-KB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages [J]. J Ethn- opharmacol, 2014, 158(12): 310-316.
  • 6Ren Wen-kai, Yin Jie, Duan Jie-lin, et al. Mouse intestinal in- nate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection [J]. Microbes Infect, 2014, 16(11): 954- 961.
  • 7Rabbi M F, Labis B, Metz-Boutigue M H, et al. Catestatin decreases macrophage function in two mouse models of experi- mental colitis [J]. Biochem Pharmacol, 2014, 89(3): 386-398.
  • 8Shin J S, Cho E J, Choi H E, et al. Anti-inflammatory effect of a standardized triterpenoid-rich fraction isolated from Rubus coreanus on dextran sodium sulfate-induced acute colitis in mice and LPS-induced macrophages [J]. J Ethnopharmacol, 2014, 158 (2): 291-300.
  • 9Wu Sz-jie, Fang Jong-yi, Ng Chang-chai, et al. Anti-inflammato- ry activity of Lactobacillus-fermented adlay-soy milk in LPS- induced macrophages through suppression of NF-KB pathways [J]. Food Res Int, 2013, 52(1): 262-268.
  • 10Chon H, Choi B, Jeong G, et al. Suppression of proinflammato- ry cytokine production by specific metabolites of Lactobacillus plantamm 10hk2 via inhibiting NF-kB and p38 MAPK expres- sions [J]. Comp Immunol Microhiol Infect Dis, 2010, 33 (6): 41-49.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部