期刊文献+

光谱角—欧氏距离的高光谱图像辐射归一化 被引量:18

Radiometric normalization of hyperspectral satellite images with spectral angle distance and Euclidean distance
原文传递
导出
摘要 辐射归一化旨在减小不同时相遥感影像间因获取条件不一致而导致的非地表辐射变化的差异,是土地覆盖变化监测的重要前提条件。本文根据高光谱图像上同类地物的谱形及数值的相似性,利用光谱角距离(SAD)和欧氏距离(ED)双重判定选取不变特征点,提出了一种基于光谱角—欧氏距离的辐射归一化方法。在评价指标中除了常用的均方根误差和相对偏差,更增加了高光谱特色的衡量光谱保真性指标:皮尔森系数、光谱扭曲程度。利用高光谱遥感CHRIS图像对本文提出方法进行验证,并与基于多元变化检测(MAD)的辐射归一化方法比较。结果表明,本文方法不仅在辐射特性上优于基于多元变化检测(MAD)的方法,而且具有保持光谱特性的优势,具有较好的应用前景。 This paper proposes an automated radiometric normalization method based on Spectral Angle Distance( SAD) and Euclidean Distance( ED). The method is implemented on two hyperspectral images taken by the Compact High Resolution Imaging Spectrometer( CHRIS) sensor. Experimental results confirm that the proposed method is not only superior to the Mean Absolute Difference( MAD)-based normalization of radiation characteristics,but also has the advantage of commendably preserving the spectral characteristics.Radiometric normalization minimizes the radiometric differences between two images caused by unstable factors in the acquisition conditions rather than by changes in surface reflectance,which is crucial to land-cover change detection. Radiometric normalization is known as relative radiometric correction. In contrast to absolute correction,the relative method does not need atmospheric data at the moment of image acquisition. This method uses one of the images as reference and then adjusts the radiometric characteristics of the other image,known as subject image,to match the reference image.This paper proposes an automated radiometric normalization method based on SAD and ED. The proposed method selects unchanged pixels by SAD and ED by considering that the same feature has a similar spectrum shape on hyperspectral images.Therefore,we make an attempt to validate the SAD-ED radiometric normalization of multitemporal hyperspectral satellite images.The Mean Absolute Difference( MAD)-based normalization method is also applied for comparison. In the essay,common evaluation index Root Mean Square Error( RMSE) and Relative Deviation Index( RDI) are used to verify the normalized results. Considering the features of hyperspectral remote sensing images,we also apply the spectral fidelity indexes,i. e.,Pearson Correlation Coefficient( PCC) and spectral distortion degree.The method is implemented on two hyperspectral images taken by the CHRIS sensor. Common evaluation index RMSE and( RDI) are used to verify the normalized results. PCC and spectral distortion degree are also applied to evaluate spectral fidelity for radiometric normalization of multitemporal hyperspectral satellite imagery. The evaluation results of RMSE and deviation D show that the SAD-ED normalization of CHRIS images is feasible and more effective than the MAD-based normalization. In addition,the evaluation results of PCC and DD show that the SAD-ED normalization performs better in keeping the spectral-dimensional information of hyperspectral images compared with the MAD-based normalization.Experimental results confirm that the proposed method in this essay is not only superior to the MAD-based normalization of radiation characteristics,but also has the advantage of commendably preserving the spectral characteristics of hyperspectral images,thereby having good application prospects.
出处 《遥感学报》 EI CSCD 北大核心 2015年第4期618-626,共9页 NATIONAL REMOTE SENSING BULLETIN
基金 中国地质调查局地质调查工作项目(编号:1212011220099)
关键词 高光谱遥感 光谱角距离 欧氏距离 辐射归一化 光谱保真性 hyperspectral remote sense SAD ED radiometric normalization spectral fidelity
  • 相关文献

参考文献18

  • 1白穆,刘慧平,朱寿东,冯徽徽.多元变化检测的相对辐射校正方法研究[J].测绘科学,2012,37(4):143-146. 被引量:4
  • 2Canty M J, Nielsen A A and Schmidt M. 2004. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment, 91(3/4) : 441 -451 [ DOI: 10. 1016/j. rse. 2003. 10.024 ].
  • 3Canty M J and Nielsen A A. 2008. Automatic radiometrie normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment, 112 ( 3 ) : 1025 - 1036 [DOI : 10. 1016/j. rse. 2007.07. 013 ].
  • 4Canty M J and Nielsen A A. 2012. Linear and kernel methods for multi- variate change detection. Computers & Geoscienees, 38 ( 1 ) : 107 - 114 [DOI: 10. 1016/j. eageo. 2011.05.012].
  • 5Elvidge C D, Yuan D and Weerackoon R D, Lunetta Ross S. 1995. Rel- ative radiometric normalization of Laudsat Multispeetral Scanner (MSS) data using an automatic scattergram-controlled regression. Photogrammetric Engineering and Remote Sensing, 61 (10) : 1255 - 1260.
  • 6Hong G and Zhang Y. 2008. A comparative study on radiometric normal- ization using high resolution satellite images. International Journal of Remote Sensing, 29 ( 2 ) : 425 - 438 [DOI: 10. 1080/ 01431160601086019 ].
  • 7廖明生,朱攀,龚健雅.基于典型相关分析的多元变化检测[J].遥感学报,2000,4(3):197-201. 被引量:28
  • 8Liu S H, Lin C W, Chen Y R and Tseng C M. 2012. Automatic radio- metric normalization with genetic algorithms and a Kriging model. Computers & Geosciences, 43:42 -51 [DOI: 10. 1016/j. cageo. 2011.12.016].
  • 9Lo C P and Yang X. 1998. Some practical considerations of relative ra- diometric normalization of muhidate Landsat MSS data for land use change//Proeeedings of ASPRS/RTI 1998 Annual Convention. Tampa, Floria: 1184 - 1193.
  • 10Roy D P, Ju J C, Lewis P, Schaaf C, Gao F, Hansen M and Lindquist E. 2008. Multi-temporal MODIS-Landsat data fusion for relative ra- diometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112(6) : 3112 -3130 [DOI: 10. 1016/j. rse. 2008.03. 009 ].

二级参考文献62

共引文献72

同被引文献173

引证文献18

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部