期刊文献+

关于太阳图魔幻标号的若干结果 被引量:3

Some Results on the Magic Labeling of Sun-graphs
下载PDF
导出
摘要 为了用太阳图来刻画或研究环形网络,太阳图的标号理论就成为环形网络节点编码技术手段之一。通过对魔幻标号、优美标号及顶点魔幻标号之间的关联进行研究,证明了具有顶点魔幻标号的太阳图有一个边魔幻全标号。得到了具有顶点魔幻标号的非同构的不连接的太阳图能够快速构造具有边魔幻全标号的不同构的连接的太阳图的结论,以及同构的非连接的太阳图由顶点魔幻标号转化为边魔幻全标号的方法。 IIn order to use the sun-graphs to describe or research ring network,then the labeling theory ofsun-graph has become one of the means of ring network node coding technology. Based on the correlationstudy of magic labeling,graceful labeling and vertex-magic labeling, we proved the edge-magical labeling ofthe sun-graphs, concluded the disjoint non-isomorphic sun-graph with vertex-magic labeling convert rapidlyinto the joint non-isomorphic sun-graph with edge-magical total labeling, and presented a method to convertvertex-magic labeling into edge-magical total labeling for disjoint non-isomorphic sun-graph.
出处 《甘肃科学学报》 2015年第4期1-5,共5页 Journal of Gansu Sciences
基金 国家自然科学基金资助项目(61163054) 甘肃省财政厅专项资金(2014-63)
关键词 顶点魔幻标号 优美标号 k-魔幻标号 边魔幻全标号 Vertex-magic labeling Graceful labeling k-magical labeling Edge-magical total labeling
  • 相关文献

参考文献3

二级参考文献15

  • 1Bondy, J.A. and Murty, U.S.R., Graph Theory With Application, Macmillan, New York, 1976.
  • 2Bela. Bollobas, The Modern Graph Theory, Springer-Verlag, New Tork, Inc., 1998.
  • 3Joseph, A. Gallian, A survey: Recent results, conjectures and open problems on labeling graphs, J. Graph Theory, 1989, 13(4): 491-504.
  • 4i Kathiresan, K.M, Two classes of graceful graphs, Ars Combinatoria, 2000, 55: 129-132.
  • 5Gallian, J.A., A dynamic survey of graph labelling, The Electronic Journal of Combinatorics, 2007, 14: #DS6, 180pages.
  • 6Joseph A. Gallian. A Dynamic Survey of Graph Labeling[J]. The Electronic Journal of Combinatorics, 2007,14, DS6.
  • 7Alexander Rosa. On Certain Valuations of the Vertices of a Graph[J]. Theory of Graphs(Internat. Symposium, Rome,July 1966) ,Gordon,Breach N Y,Dunod Paris,1967:349-355.
  • 8Bondy J A, Murty U S R. Graph Theory with Application[M]. Macmillan,New York, 1976.
  • 9Kathiresan K M. Two Classes of Graceful Graphs [J]. Ars Combinatoria,2000,55:129-132.
  • 10Llado A. Largest Cliques in Connected Supermaglc Graphs[J]. DMTCS Proc,AE,2005:219-222.

共引文献22

同被引文献11

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部