期刊文献+

一种基于标签和协同过滤的并行推荐算法 被引量:2

A parallel recommendation algorithm based on tagging and collaborative filtering
下载PDF
导出
摘要 针对基于用户打分的传统协同过滤推荐算法存在准确率较低以及计算延时的问题,提出了一种基于标签与协同过滤的并行混合推荐算法。该算法通过计算标签的词频-逆文档频率(TF-IDF)值降低流行标签的权重,根据用户的历史行为预测用户对其他资源的偏好值,最后依据预测偏好值排序产生Top-N推荐结果。对该算法的计算效率与复杂度进行了理论分析,并且通过并行编程模型MapReduce使其得到了实现,最后在实验中进行了它与Apache软件基金会项目Mahout的协同过滤算法的对比分析。实验结果表明该算法有较高的准确性,能有效地提高推荐效率。 The study focused attention on the problems of lower precision and computing latency of traditional collabora- tive filtering recommendation algorithms, and proposed a parallel hybrid recommendation algorithm based on tagging and collaborative filtering. The algorithm reduces the weight of prevalent tags by calculating the TF-IDF ( time fre- quency-inverse document frequency) value of tags on predicts user preference based on the user historical behav- iors, and finally recommends the Top-N of the predictions. The algorithm' s computation efficiency and complexity were theoretically analyzed, and it was implemented by using the parallel programing model of MapRedce. The ana- lytical comparison of the algorithm with the collaborative filtering algorithm applied to the Mahout, an item of the A- pache Software Foundation, was conducted, and the result showed its higher accuracy, so it can effectively improve the recommendation efficiency.
出处 《高技术通讯》 CAS CSCD 北大核心 2015年第3期307-312,共6页 Chinese High Technology Letters
基金 国家自然科学基金(61402023) 北京市自然科学基金(4132025) 北京市教师队伍建设青年英才计划(YETP1448)资助项目
关键词 协同过滤 推荐 标签 TF-IDF MAPREDUCE collaborative filtering, recommendation algorithm, tag, TF-IDF, MapReduce
  • 相关文献

参考文献13

  • 1Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, North Carolina, USA. 1994. 175-186.
  • 2张斌,张引,高克宁,郭朋伟,孙达明.融合关系与内容分析的社会标签推荐[J].软件学报,2012,23(3):476-488. 被引量:42
  • 3Koren Y, Bell R, Volinsky C. Matrix Factorization tech- niques for recommender systems. 1EEE Computer Society, 2009,42 ( 8 ) : 30-37.
  • 4范波,程久军.用户间多相似度协同过滤推荐算法[J].计算机科学,2012,39(1):23-26. 被引量:69
  • 5罗辛,欧阳元新,熊璋,袁满.通过相似度支持度优化基于K近邻的协同过滤算法[J].计算机学报,2010,33(8):1437-1445. 被引量:126
  • 6Koren Y, Sill J. Collaborative filtering on ordinal user feedback. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 2013. 3022-3026.
  • 7Wang J, Lin K, Li J. A collaborative filtering recommen-dation algorithm based on user clustering and Slope One scheme. In: Proceedings of the ICCSE, Colombo, Sri Lanka, 2013. 1473-1476.
  • 8Cai Y, Leung H, Li Q, et al. Typicality-Based Collabo- rative FiheringRecommendation. IEEETransactions on Knowledge and Data Engineering, 2013, 26(3) :766-779.
  • 9Cechinel C, Sicilia M 6, S6nchez-Alonso S, et al. Evalu- ating collaborative filtering recommendations inside large learning object repositories. Information Processing & Management, 2013, 49( 1 ) : 34-50.
  • 10Zhang X. Interactive patent classification based on multi- classifier fusion and active learning. Neurocomputing, 2014, 127(3) :200-205.

二级参考文献47

  • 1贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:47
  • 2陈刚,刘发升.基于BP神经网络的数据挖掘方法[J].计算机与现代化,2006(10):20-22. 被引量:14
  • 3Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295.
  • 4Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177.
  • 5Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14.
  • 6Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24.
  • 7Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38.
  • 8Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42.
  • 9Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8.
  • 10Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310.

共引文献272

同被引文献17

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部