期刊文献+

氧化亚硅/石墨/碳复合材料的制备及其电化学性能 被引量:4

Preparation and Electrochemical Cycle Performance of SiO/G/C Composite Anode Material
原文传递
导出
摘要 采用高能球磨法和高温焙烧法,以氧化亚硅、石墨和葡萄糖为原料,制备了氧化亚硅/石墨/碳(SiO/G/C)复合材料,研究了其最佳制备条件和电化学性能.结果显示,在氩气中700℃下焙烧2h后所制得的SiO/G/C负极材料在质量比为SiO∶G∶C=34∶51∶15时具有最佳的电化学性能.该复合材料首次放电容量为803.5mAh/g,50周时放电容量仍保持在592mAh/g.XRD结果表明,该复合材料主要组成为SiO、石墨和无定形碳.石墨和无定形碳的添加对SiO的电化学性能有显著改善作用. A SiO/graphite/amorphous carbon(SiO/G/C)composite material has been prepared by a high temperature pyrolysis process and a high-energy ball-milling technique,using SiO,graphite and glucose as raw materials.The optimized preparation conditions and corresponding electrochemical performance were investigated.The results showed that the SiO/G/C composite with the promising electrochemical performance could be prepared by calcination at 700℃in Ar with a weight ratio of 34∶51∶15(SiO∶G∶C).The initial discharge capacity of the(SiO)34G51C15anode material was 803.5mAh/g.After 50 cycles,the reversible capacity still maintained above 592mAh/g.The XRD result indicated that the composite was composed of SiO,graphite and amorphous carbon.Addition of the graphite and the amorphous carbon was believed to significantly improve the electrochemical performance of SiO.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期54-58,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 国家高技术研究发展计划(2011AA11A255) 天津市应用基础及前沿课题(13JCZDJC32000)
关键词 锂离子电池 负极材料 SiO/G/C复合材料 电化学循环性能 lithium-ion battery anode material SiO/G/C composite cycle performance
  • 相关文献

参考文献11

  • 1Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1 167-1 176.
  • 2Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6 861): 359-367.
  • 3Terrnova M L, Orlanducci S, Tamburri E, et al. Si/C hybrid nanostructures for Li-ion anodes: An overview[J]. Journal of Power Sources, 2014, 246: 167-177.
  • 4Amine K, Kanno R, Tzeng Y. Rechorgeable lithium batteries and beyond: Progress, challenges, and future direc- tions[J]. MRS Bulletin, 2014, 39(05): 395-401.
  • 5高鹏飞,杨军.锂离子电池硅复合负极材料研究进展[J].化学进展,2011,23(2):264-274. 被引量:35
  • 6Zamfir M R, Nguyen H T, Moyen E, et al. Silicon nanowires for Li-based battery anodes: a review[J]. Journal of Materials Chemistry A, 2013, 1(34): 9 566-9 586.
  • 7Tian H, Tan X, Xin F, et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries[J]. Nano Energy, 2014, 11: 490-499.
  • 8Miyaehi M, Yamamoto H, Kawai H, et al. Analysis of SiO anodes for lithium-ion batteries [J]. Journal of the Elec- trochemical Society, 2005, 152(10): A2 089-A2 091.
  • 9Momma T, Aoki S, Nara H, et al. Eleetrodeposlted novel highly durable SiOC composite anode for Li battery above several thousands of cycles[J]. Electrochemistry Communications, 2011, 13(9) : 969- 972.
  • 10Doh C H, Park C W, Shin H M, et al. A new SiO/C anode composition for lithium-ion battery[J]. Journal of Power Sources, 2008, Wang M S, batteries[J] 179(1): 367- 370.

二级参考文献97

  • 1Armand M, Tarascon J. Nature, 2008, 451 (7179) : 652-657.
  • 2Boukamp B A, Lesh G C, Huggins R A. J. Electrochem. Soc. ,1981, 128 (4) : 725-729.
  • 3Megahed S, Scrosati B. J. Power Sources, 1994, 51 (1/2): 79-104.
  • 4HuggJns R A. J. Power Sources, 1999, 81 : 13-19.
  • 5Ryu J H, Kim J W, Sung Y E, Oh S M. Etectrochem. Solid State Lett., 2004, 7 (10): A306-A309.
  • 6Choi N, Yew K, Kim H, Kim S, Choi W. J. Power Sources, 2007, 172 ( 1 ) : 404-409.
  • 7Li H, Huang X, Chen L, Wu Z, Liang Y. Electrochem. Solid State Lett. , 1999, 2:547-549.
  • 8Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J. Adv. Mater. , 2007, 19 (22) : 4067-4070.
  • 9Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J, Pei N. Solid State Ionics, 2000, 135 (1/4) : 181-191.
  • 10Cui L F, Ruffo R, Chan C K, Peng H, Cui Y. Nano Lett. , 2008, 9 (1) : 491-495.

共引文献34

同被引文献25

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部