期刊文献+

IRT框架下的缺失过程建模及其Bayes估计方法

下载PDF
导出
摘要 文章研究教育与心理测量中的不可忽略缺失数据的建模和估计问题。并对观测数据和缺失指标同时建模。针对不可忽略缺失数据,利用潜变量建模法,采用项目反应模型来拟合缺失指标。同时,观测数据模型及缺失指标模型中的参数采用Gibbs抽样法一并给出估计。通过模拟实验验证,忽略缺失数据会给参数估计带来很大的偏差,相反,对不可忽略过程进行建模得出的参数估计偏差会大大减少。
出处 《统计与决策》 CSSCI 北大核心 2015年第14期13-16,共4页 Statistics & Decision
基金 国家自然科学基金资助项目(11201313) 吉林省社会科学基金资助项目(2012B115) 辽宁省科技厅博士启动基金项目(20131107)
  • 相关文献

参考文献11

  • 1Beguia A A, Glas C A W . MCMC Estimation and Some Model-Fit Analysis of Multidimensional IRT Models[Z].Psychometrika,2001, (66).
  • 2Little R J A, Rubin D B. Statistical Analysis With Missing Data. 2nd ed. (Sun, S Z, Trans. )[Z].New York: John Wiley & Sons,2004.
  • 3Rubln D B. Inference and Missing Data [C]. Biometrika, 1976,(63).
  • 4Karkee T, Finkelman M. (April). Missing Data Treatment Methods in Parameter Recovery for A Mixed-Format Test[J].Paper Presented at The Annual Meeting of The American Educational Research Associa- tion, Chicago,2007.
  • 5Gelman A, Rubin D B. Inference From Iterative Simulation Using Multiple Sequences (With Discussion)[J].Statistical Science,1992,(7).
  • 6Huisman M. Imputation of Missing Item Responses: Some Simple Techniques[J].Quality and Quantity,2000,(34).
  • 7Muraki E, Bock R D . IRT Based Test Scoring and Item Analysis For Graded Open-Ended Exercises and Performance Tasks[J].Chicago: Scienti-C Software Int,1993.
  • 8Moustaki I , Knott M. Weighting for Item Non-Response in Attitude Scales By Using Latent Variable Models With Covariates[J].Journal of The Royal Statistical Society, 2000,(163).
  • 9汪金晖,张淑梅,辛涛.缺失数据下等级反应模型参数MCMC估计[J].北京师范大学学报(自然科学版),2011,47(3):229-234. 被引量:4
  • 10曾莉,辛涛,张淑梅.2PL模型的两种马尔可夫蒙特卡洛缺失数据处理方法比较[J].心理学报,2009,41(3):276-282. 被引量:10

二级参考文献22

  • 1Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251-269.
  • 2Huisman, M. (2000). Imputation of missing item responses: some simple techniques. Quality and Quantity, 34, 331-351.
  • 3Jones, D. H., & Nediak, M. (2000). Item parameter calibration of LSAT items using MCMC approximation of Bayes posterior distributions. Rutcor research report, 7-2000.
  • 4Karkee, T., & Finkelman, M. (2007, April). Missing Data treatment Methods in Parameter Recovery for a Mixed-Format Test. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
  • 5利特尔,鲁宾.(2004).缺失数据统计分析.(孙山泽译). 北京:中国统计出版社.
  • 6Ludlow, L. H., & O’Leary M. (1999). Scoring omitted and not-reached items: practical data analysis implications. Educational and Psychological Measurement, 59, 615-630.
  • 7Maris, G., & Bechger, T. M. (2005). An introduction to the DA-T Gibbs sampler for the two-parameter logistic (2PL) model and beyond. Psicológica, 26, 327-352.
  • 8Muraki, E., & Bock, R. D. (1993). PARSCALE: IRT based test scoring and item analysis for graded open-ended exercises and performance tasks. Chicago: Scientific software Int.
  • 9Patz, R. J., & Junker, B. W. (1999a). A straightforward approach to markov chain monte carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146-178.
  • 10Patz, R. J., & Junker, B. W. (1999b). Applications and extensions of MCMC in IRT: multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342-366.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部