期刊文献+

基于五阶CNN的图像边检测算法研究 被引量:5

The algorithm for detection edge of image based on the 5 dimension CNN
下载PDF
导出
摘要 边缘是图像的最基本的特征之一,边缘提取是图像分析中非常重要的步骤,而细胞神经网络是边缘检测中很有效的一种方法.作者基于细胞神经网络(cellular neural network,简称CNN),研究了5阶CNN模板对图像边缘检测的过程,阐述了算法实现过程中的关键步骤,并且证明了算法的稳定性.对图像分别采用基于5阶、3阶CNN算法和经典算子(Prewit、Canny、Sobel等)进行边缘提取,定性分析比较了几类算法在性能上的优劣,定量比较了检测结果的准确性.实验结果表明,基于5阶CNN模板算法的边缘检测结果更加显著,且在硬件实现上能够高速并行计算,实现图像实时处理. Edge is one of the basic characteristics of image,edge detection is a very important step in image analysis,and cellular neural network as a method is very effective in edge detection.This article was based on cellular neural networks(cellular neural network,CNN),studied the 5dimenson CNN template about the process of image edge detection,expounded the key steps in the process of algorithm realization,and proved the stability of the algorithm.With image respectively based on 5dimenson CNN algorithm,3dimenson CNN algorithm and classical algorithm(Prewit,Canny,Sobel,etc.)for edge detection,the article analysed and compared the pros and cons of several kinds of algorithm on the performance,the accuracy of the quantitative comparison of the test results. The experimental results showed that the CNN template algorithm of edge detection based on 5dimenson results was more effective,with high-speed parallel computing in hardware implementation,could achieve real-time image processing.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2015年第3期15-21,共7页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(11461063) 国家社会科学基金资助项目(14BTJ021) 国家教育部人文社会科学基金资助项目(13YJAZH040) 新疆维吾尔自治区高校科研计划项目(XJEDU2013I26) 新疆财经大学研究生科研创新项目(2014045) 新疆财经大学硕士研究生科研创新重点科研项目(CDYJK2014006)
关键词 CNN 边缘检测 5阶模板 品质因子P cellular neural networks(CNN) edge detection 5dimenson template quality factor P
  • 相关文献

参考文献12

  • 1Guo H W, Zhao Z. Nonlinearity correct ion in digit al fringe project ion profilome try by using HSItogram matching technique[J]. Proceedings of S PIE,2007,6616:211-219.
  • 2Pan J H,Peisen S H, Chang F P. Colour-coded binary fringe project ion technique for 3-D shape measurement [J]. Optical Engineering, 2006,44(2): 6061-6069.
  • 3Chualo Y L. Cellular neural networks: application [J]. Trans Circuits System, 1988,35(10): 1273-1290.
  • 4Chualo Y L. Cellular neural networks:theory [J]. Trans Circuits System, 1988,35 (10):1257-1272.
  • 5Zeng Z,Wang J. Complete stability of cellular neural networks with time-varying delays[J]. Trans on Circuits and Systems L. Regular Papers, 2006,53(4) : 944-955.
  • 6杨金祥,钟守铭,鄢克雨.Stability for Cellular Neural Networks with Delay[J].Journal of Electronic Science and Technology of China,2005,3(2):123-125. 被引量:1
  • 7朱大奇,史惠.人工神经网络导论[M].北京:高等教育出版社,2001.
  • 8Plataniontis K N, Venetsanopoulos A N. Color image processing and applications [M]. Heidelberg: Springer, 2000.
  • 9国方媛,李国东.基于细胞神经网络和网格特征的碑刻文字识别[J].计算机系统应用,2010,19(11):180-184. 被引量:4
  • 10Yu Y H,Chen C C. A new edge detection approach based on image context analysis [J]. Image and Vision Computing, 2006,24(10):1090-1102.

二级参考文献12

  • 1曹进德,林怡平.STABILITY OF A CLASS OF NEURAL NETWORK MODELS WITH DELAY[J].Applied Mathematics and Mechanics(English Edition),1999,20(8):91-95. 被引量:3
  • 2何如月.碑刻文献在历史研究中的价值——以《金石录》和《集古录》为例[J].考古与文物,2005(4):89-92. 被引量:5
  • 3李国东,臧鸿雁,王江河,洪慧闻,刘燕玲,闵乐泉.基于CD细胞神经网络的肝脏B超图像数据挖掘[J].中国临床康复,2006,10(25):121-123. 被引量:2
  • 4Gonzalez R C, Woods R E. Digital Image Processing [M]. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.
  • 5Yuen P C, Feng G C, Zhou J P. A Contour Detection Method: Initialization and Contour Model [J]. Pattem Recognition Letters (S0167-8655), 1999, 20(2): 141-148.
  • 6Canny J. A Computational Approach to Edge Detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1986, 8(6): 679-698.
  • 7Chua L O, Yang L. Cellular Neural Networks: Theory and Applications [J]. IEEE Transactions on Circuits and Systems (S0098-4094), 1988, 35(10): 1257-1290.
  • 8Chua L O. CNN: A Vision of Complex [J]. International Journal of Bifurcation and Chaos (S1793-6551), 1997, 7(10): 2219-2425.
  • 9Chua L O, Roska T. Cellular Neural Networks and Visual Computing [M]. London, UK: Cambridge Press, 2002.
  • 10Zang H Y, Li G D, Min L Q, et aL Design for Robustness Counter Detection CNN with Applications [C]// International Conference on Communications, Circuits and Systems, Hong Kong, China. USA: Institute of Electrical and Electronics Engineers Computer Society, 2005, 2: 953-958.

共引文献6

同被引文献51

  • 1刘黎平,张鸿发,王致君,宋新民.利用双线偏振雷达识别冰雹区方法初探[J].高原气象,1993,12(3):333-337. 被引量:70
  • 2朱大奇,史惠.人工神经网络导论[M].北京:高等教育出版社.2001.
  • 3JOHNSON J T, The Storm Cell Identification and Tracking Algo- rithm:An Enhanced WSR-88D Algorithm. [ J]. Wea Forecasting,1998 ( 13 ) :263 - 276.
  • 4CHUALO, YANG L. Cellular Neural Networks : Application [ J ]. Trans Circuits System, 1988,35 (10) : 1273 - 1290.
  • 5CHUALO, YANG L. Cellular Neural Networks :Theory [ J ]. Trans Circuits System, 1988,35 (10) : 1257 - 1272.
  • 6YU Yuan-hui, CHANG Chin-chen. A New Edge Detection Ap- proach Based on Image Context Analysis [ J ]. Image and Vision Computing ( S0262-8856), 2006, 24(10) : 1090 - 1102.
  • 7Yao Z, Yi W. License plate detection based on multistage information fusion[J]. Information Fusion, 2014,18:78-85.
  • 8Sermanet P, Eigen D, Zhang X, et al. Overfeat: Integrated recognition, localization and detection using convolutional net- works[J], arXiv Preprint arXiv 1312. 6229,2013.
  • 9Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. Columbus IEEE, 2014: 1717-1724.
  • 10Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[J], ePrint arXiv:1409. 4842, 2014:1-9.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部