期刊文献+

基于功能磁共振影像的阿尔茨海默病分类研究 被引量:1

Research on AD classification based fMRI
下载PDF
导出
摘要 通过功能磁共振影像研究阿尔茨海默病与正常对照组之间的特征差异.研究对象为16例阿尔茨海默病和28例正常对照组的功能磁共振影像.首先,对静息态功能磁共振影像进行预处理;接着,运用基于信息极大化的独立成分分析算法提取阿尔茨海默病和正常对照组样本的组间特征;最后,将提取出的特征表达系数送入支持向量机分类器对阿尔茨海默病和正常对照组样本分类.在阿尔茨海默病与正常对照组的分类实验中,获得的最大平均分类准确度、敏感度及特异度分别为97.82%、94.88%、99.50%.结果显示,组间的差异特征能够比较准确地将阿尔茨海默病从正常对照组中区分开来. The paper studies the characteristic differences between Alzheimer's disease(AD)and the healthy controls based on functional magnetic resonance imaging(fMRI).The study objects are the fMRI of 16Alzheimer's disease patients and 28 healthy controls.Firstly,the resting-state fMRI was preprocessed.Then,group features of Alzheimer's disease and healthy controls with information maximization algorithm based on independent component analysis.Finally,the features into the support vector machine classifier for the classification of Alzheimer's patients and healthy controls.In the classification experiment of Alzheimer's patients and healthy controls,the obtained maximum average accuracy,sensitivity and specificity are 97.82%,94.88%,99.50%.The results showed that the differences between the groups can separate Alzheimer's disease from the healthy controls accurately.
作者 杨文璐 李彦
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2015年第3期88-95,共8页 Journal of Anhui University(Natural Science Edition)
基金 上海市教育委员会科研创新资助项目(12YZ116)
关键词 阿尔茨海默病 功能磁共振影像 独立成分分析 支持向量机 Alzheimer's disease functional magnetic resonance imaging independent component analysis support vector machine
  • 相关文献

参考文献16

  • 1沈来凤.老年痴呆症的研究进展[J].现代医药卫生,2010,26(4):542-544. 被引量:30
  • 2Westman E, Aguilar C, Muehlboeck J S, et al. Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer~ s disease and mild cognitive impairment[J]. Brain Topography, 9,013,26(1) : 9-23.
  • 3Tripoliti E E, Fotiadis D I, Argyropoulou M, et al. A six stage approach for the diagnosis of the Alzheimer' s disease based on fMRI data[J]. Journal of Biomedical Informatics, 2010,43 (2) : 307-320.
  • 4Tripoliti E E, Fotiadis D I, Argyropoulou M. A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment[J]. Artificial Intelligence in Medicine, 2011,53(1) :35-45.
  • 5王军,张莹,郑妍鹏,王虹峥,李坤成,齐志刚,崔瑞雪.阿尔茨海默病早期诊断:影像学和体液生物标志物研究前沿和新动态[J].中国医学前沿杂志(电子版),2012,4(10):36-47. 被引量:8
  • 6Weiner M W, Veitch D P, Aisen P S, et al. The Alzheimer' s disease neuroimaging initiative: a review of papers published since its inception[J]. Alzheimer's & Dementia,2013,9(5) :e111-e194.
  • 7Yan C G, Zhang Y F. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI[J]. Frontiers in Systems Neuroseience, 2010,4 : 13.
  • 8Hyvarinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000,13(4) : 411-430.
  • 9Ylipaavalniemi J, Vige rio R. Analyzing consistency of independent components: an fMRI illustration [J]. NeuroImage, 2008,39 (1) : 169-180.
  • 10Calhoun V D, Adali T, Pearison G, et al. Group ICA of furmtional MRI data: separability, stationarity, and inference[C]//Proc Int Conf on ICA and BSS San Diego, CA, 2001:155.

二级参考文献115

共引文献3148

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部