期刊文献+

基于NSCT的超声图像自适应阈值去噪方法 被引量:7

Denoising Method of the Ultrasonic Image Adaptive Threshold Based on Nonsubsampled Contourlet Transform
下载PDF
导出
摘要 根据超声图像乘性斑点噪声模型以及非下采样Contourlet子带系数的统计特性,提出了一种改进的基于非下采样Contourlet变换(NSCT)的斑点噪声抑制算法。上述算法通过把对数变换后的超声图像的NSCT子带系数模型化为广义高斯分布(GGD),给出一个改进的自适应Bayes Shrink阈值,用软阈值函数处理来实现超声图像的去噪处理。实验结果表明,相比于已有的基于小波和基于NSCT的Bayes Shrink阈值去噪法,在去噪性能和视觉效果上,上述算法都有明显的提高和改善,并且也有效地保持了原始图像的边缘和细节信息。 Combining the ultrasonic image multiplicative speckle noise model and the statistic characteristic of the non-down-sampling Contourlet sub-band coefficient,an improved speckle noise suppression algorithm based on non-down-sampling Countourlet Transfor-mation( NSCT) is presented in this paper. The ultra-sonic image NSCT subband coefficient model after the logarithm transformation is transformed into the General Gaussian Distribution( GGD)by this algorithm. An improved adaptive Bayes Shrink threshold value is given and the noise Suppression processing is achieved by a soft threshold function. The test result shows,compared with the existing noise suppression methods based on Wavelet Transform and Contourlet Transform,the algorithm presented in the paper has evident improvement in the performance evaluation of noise suppression and the subjective visual effect. Meanwhile,the marginal and detailed information of the original image are maintained effectively as well.
出处 《计算机仿真》 CSCD 北大核心 2015年第7期248-252,共5页 Computer Simulation
基金 山东省高校科技计划项目(J13LN16) 山东科技大学研究生教育创新计划项目(KDYC1216)
关键词 超声图像 非下采样轮廓小程序变换 贝叶斯阈值 Ultrasound image Nonsubsampled Contourlet transform(NSCT) Bayesian threshold
  • 相关文献

参考文献3

二级参考文献87

  • 1韩亮,李勇明,温罗生,蒲秀娟,王星.基于非下采样Contourlet域高斯尺度混合模型的图像降噪[J].光电子.激光,2009,20(8):1123-1128. 被引量:1
  • 2梁栋,沈敏,高清维,鲍文霞,屈磊.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046. 被引量:38
  • 3[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 4[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 5[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 6[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 7[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 8[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 9[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 10[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.

共引文献226

同被引文献57

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部