期刊文献+

一种基于HOG的多清晰度模板行人检测方法 被引量:1

Multi-Definition Template of HOG for Pedestrian Detection
下载PDF
导出
摘要 行人检测是计算机视觉领域一个非常活跃的研究方向,为消除HOG特征提取过程中混叠现象对行人检测的影响,在特征提取过程中采用三线性插值技术;为解决待检测图像上采样过程会造成原始图像模糊而影响提取到的HOG特征不能完整描述行人的问题,提出一种基于多清晰度模板的分类器训练方法,首先对测试样本进行模糊处理,然后再提取HOG特征进行分类器训练用于行人检测。在INRIA行人检测库和自建的行人库进行了广泛的实验,仿真结果表明在窗口误检率(FPPW)为10-5量级时,将漏检率降低到了15%;在640*480的图像分辨率下检测时间控制在0.5s内。 Pedestrian detection is a very active field in computer vision. In order to reduce the influence of overlap between adjacent blocks,a tri-linear interpolation is applied in the steps of extracting HOG feature. To overcome the blur brought by the up-sample of image and poor description of HOG,a multi-definition SVM classifier is proposed.First,the test image sample is blurred,then HOG feature is extracted to train classifier and detect pedestrian. Comprehensive experiments on INRIA Pedestrian database and self-built database show that the miss rate of detection is decreased to 15% at the false positive per window( FPPW) of 10-5,and the average detection time is about 0. 5s on the image resolution of 640* 480.
出处 《计算机仿真》 CSCD 北大核心 2015年第7期398-401,共4页 Computer Simulation
基金 国家自然科学基金资助(61273150 61433003) 北京高等学校青年英才计划(YETP1192)
关键词 行人检测 多清晰度模板 三线性插值 支持向量机 Pedestrian detection Multi-definition template Tri-linear interpolation SVM
  • 相关文献

参考文献14

  • 1Piotr Dollal r, Christian Wojek. Pedestrian Detection : An Evalua-tion of the State of the Art[ J] . IEEE Transactions on Pattern Anal-ysis and Machine Intelligence. 2012,32(4) :743-761.
  • 2Zheng Gang, Chen Youbin. A Review on Vision-Based PedestrianDetection[ J]. IEEE Global High Tech Congress on Electronics.2010,3(12):49-54.
  • 3Li Bo, Yao Qingming. A Review on Vision-based Pedestrian De-tection in Intelligent Transportation Systems [ C ]. Networking,Sensing and Control (ICNSC), IEEE. 2010:393-398.
  • 4D G Lowe. Object Recognition from Local Scale-Invariant Features[C]. The Proceedings of the 7th IEEE International Conference onComputer vision, 1999 : 1150-1157.
  • 5杜金辉,管业鹏,时勇杰.基于快速SIFT匹配的行人信息检测[J].电子器件,2012,35(5):601-606. 被引量:4
  • 6Liu Yazhou, Shan Shiguang. 3D Haar-Like Features for Pedestri-an Detection [ C ]. IEEE International Conference on Multimediaand Expo, 2007:1263-1266.
  • 7S Belongie,J Malik,Puzicha J Matching shapes[ C]. Proceedingsof the 8th IEEE International Conference on Computer Vision.2001-.454-461.
  • 8N Dalai, B Triggs. Histograms of Oriented Gradients for HumanDetection[ C] . IEEE Computer Society Conference on ComputerVision and Pattern Recognition, 2005 : 886-893.
  • 9Y Xin, S Xiaosen, S Li. A Combined Pedestrian Detection MethodBased on Haar-Like Features and HOG Features[ C]. 3rd Interna-tional Workshop on Intelligent Systems and Applications, 2011:1-4.
  • 10C Zeng, H Ma, A Ming. Fast Human Detection Using mi-SVMand a Cascade of HOG - LBP Features [ C ]. 17th InternationalConference on Image Processing, 2010 : 3845-3848.

二级参考文献24

  • 1Gavrila D. The visual analysis of human movement: A survey[J]. Computer Vision and Image Understanding, 1999, 73(1):82-98.
  • 2Isard M, Blake A. Condensation-conditional density propagation for visual tracking[J]. International Joumal of Computer Vision, 1998, 29(1):5-28.
  • 3Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computer, 2003, 21:99-110.
  • 4Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005,1 : 886-893.
  • 5Xu X, Li B. Head tracking using particle filter with intensity gradient and color histogram[C]//Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), 2005: 888-891.
  • 6Chee B C. Detection and Monitoring of Passengers on a Bus by Video Surveillance [ C ]//Proceedings of 14th International Conference on Image Analysis and Processing,2007:143-148.
  • 7Han H, Ding Y, Hao K. A New Immune Particle Filter Algorithm for Tracking a Moving Target [ C ]//Proeedings of 6th Interna- tional Conference on Natural Computation,2010:3248-3252.
  • 8Zhong Z, Xu Y. Crowd Energy and Feature Analysis [ C ]// Proceedings of IEEE International Conference on Integration Technology, 2007 : 144 - 150.
  • 9Elhabian S, Ali A, Farag A. Face Recognition at-a-Distance using Texture Sparse-Stereo and Dense-Stereo [ C ]//International Conference on Multimedia Technology ,2011:6690-6695.
  • 10Czyzewski A. Examining Kalman Filters Applied to Tracking Objects in Motion [ C ]//Proceedings of the 9th International Workshop on Image Analysis for Multimedia Interactive Services ,2008:175-178.

共引文献7

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部