期刊文献+

基于神经网络的居民住宅需用系数模型研究

Research on Residential Demand Factor Model Based on ANN
下载PDF
导出
摘要 居民住宅小区需用系数的精确计算对于小区的电力资源容量配置具有重要意义。针对现有配电网规划指导原则中需用系数参考范围过宽、不够精确的缺点,通过收集唐山市中心城区配电网近年来的大量实际运行数据,针对不同类型的居民住宅小区,利用神经网络方法分别建立了考虑户数多少、户型面积、入住率等影响因素的居民小区需用系数模型。应用实例表明,在保证配电网安全运行的前提下,借助该模型规划居民小区的电力资源容量配置,可有效地节约投资成本,从而提高配电网运行的经济性。 Precise calculation of residential demand factor is of great significance for distribution network planning. The demand factor in existing guidelines of distribution network planning has the disadvantages of wide reference range and imprecision. By collecting a large number of actual operation data in distribution network of Tangshan central city in recent years,according to different types of residential district,using the method of neural network,considering the number,door area,occupancy rates and other factors that affecting demand factor,residential demand factor model is established. Simulaton results show that the demand factor which is calculated by using the model can overcome the above disadvantages,save investment costs and ensure the economic and safe operation of power distribution network planning.
出处 《计算机仿真》 CSCD 北大核心 2015年第7期413-416,443,共5页 Computer Simulation
关键词 需用系数 神经网络 配电网规划 Demand factor ANN Distribution network planning
  • 相关文献

参考文献8

二级参考文献16

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2韩立群.人工神经网络[M].北京:北京邮电出版社,2006.
  • 3Jenkins B K,Tanguay A R. Handbook of Neural Computing and Neural Networks[M]. Boston: MIT Press,1995.
  • 4Bnlsabi A. Some analytical solutions to the general approximation problem for feed forward neural networks[J]. Neural Networks 1993(6): 991-996.
  • 5Setiono R,Leow W K.FERNN: An algorithm for fast extraction of rules from neural networks[J]. Applied Intelligence,2000, 12(1-2): 15-25.
  • 6XIA Min,FANG Jian-an,TANG Yang,et al. Dynamic depression control of chaotic neural networks for associative memory[J]. Neurocomputing, 2010(73),776-783.
  • 7OZ C,LEU M C. American sign language word recognition with a sensory glove using artificial neural networks[J].Engineering Applications of Artificial Intelligence,2011(4):1204-1213.
  • 8Singhal D, Swarup K S. Electricity price forecasting using artificial neural networks[J]. Electrical Power and Energy Systems,2011(3):550-555.
  • 9WU Wei,WANG Jian,CHENG Ming-song,et al. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks , 2011(24):91-98.
  • 10中国航空工业规划设计研究院.工业与民用配电设计手册[M].3版.北京:中国电力出版社,2005.

共引文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部