期刊文献+

无人飞行器视觉SLAM特征检测和匹配算法研究 被引量:4

Research on Feature Detection and Matching Algorithm of Unmanned Aerial Vehicles Visual SLAM
下载PDF
导出
摘要 近几年图像局部特征检测和描述在机器人视觉中得到了广泛的应用,鲁棒的、快速且高精度的视觉特征检测和描述算法对飞行器进行实时的位姿估计和地图构建具有决定性意义;针对四旋翼无人飞行器平台的RGB-D传感器同时定位与地图构建(SLAM),讨论FAST、STAR、SIFT和SURF等检测算法和ORB、FREAK和SURF等匹配描述符的性能,对不同的特征算法进行对比评估出最合适的特征检测方法和匹配描述符;最后,基于Eclipse与OpenCV平台进行了实验,实验结果表明FAST检测和FREAK描述符比其他方法更适用于四旋翼飞行器在板视觉SLAM,且能基本满足实时性。 Recently,image local feature detection and description has been widely used in robot vision.It is decisive significance of a robust,rapid and high accuracy of visual feature detection and description algorithm for unmanned aerial vehicles real-time pose estimation and mapping.In view of the unmanned aerial vehicles RGB-D sensor Simultaneous Localization and Mapping(SLAM) characteristics,this paper discussed the performance of FAST,STAR,SIFT,SURF detection algorithm and the ORB,FREAK,SURF descriptor,and then compared different algorithm to find the most suitable feature detection method and the descriptor.Finally,the results of the experiment which is based on Eclipse and OpenCV platform,show that the FAST detection and FREAK descriptor is better than other methods suitable for unmanned aerial vehicles real-time visual SLAM.
出处 《计算机测量与控制》 2015年第7期2453-2455,2459,共4页 Computer Measurement &Control
关键词 无人飞行器 SLAM 特征检测 特征匹配 unmanned aerial vehicles SLAM feature detection feature matching
  • 相关文献

参考文献9

  • 1Smisek J, Jancosek M, Pajdla T. 3D with Kinect [M]. Consumer Depth Cameras for Computer Vision. Springer London, 2013:3 - 25.
  • 2白洪瑞.四旋翼飞行器控制系统设计[D].北京:装甲兵工程学院,2012.
  • 3Valenti R G, Dryanovski I, Iaramillo C, et al. Autonomous quadrotor flight using onboard RGB-D visual odometry [A]. Ro- botics and Automation (ICRA), 2014 IEEE International Confer enceon. IEEE [C]. 2014:5233 -5238.
  • 4Engelhard N, Endres F, Hess J, et al. Real- time 3D visual SLAM with a hand-held RGB-D camera [A]. Proc. of the RGB - D Workshop on 3D Perception in Robotics at the European Robot ics Forum [C]. Vasteras, 2011, 180.
  • 5王亚龙,张奇志,周亚丽.基于Kinect的三维视觉里程计的设计[J].计算机应用,2014,34(8):2371-2374. 被引量:9
  • 6Rosten E, Drummond T. Machine learning for high-speed corner detection [ A]. In European Conference on Computer Vision [C]. 2006.
  • 7Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust fea- tures [M]. Computer Vision - ECCV 2006. Springer Berlin Heidel- berg, 2006: 404-417.
  • 8Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alter native to SIFT or SURF [A]. Computer Vision (ICCV), 2011 IEEEInternationalConferenceon. IEEE [C]. 2011: 2564-2571.
  • 9Alahi A, Ortiz R, Vandergheynst P. Freak: Fast retina keypoint [A]. Computer Vision and Pattern Recognition (CVPR), 2012 IEEEConferenceon. IEEE [C]. 2012: 510-517.

二级参考文献16

  • 1NISTER D,NARODITSKY O,BERGEN J.Visual odometry [C]// CVPR 2004:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2004:I-652-I-659.
  • 2ENGEL J,STURM J,CREMERS D.Semi-dense visual odometry for a monocular camera [C]// Proceedings of the 2013 IEEE International Conference on Computer Vision.Piscataway:IEEE Press,2013:1449-1456.
  • 3YILMAZ O,KARAKUS F.Stereo and Kinect fusion for continuous 3D reconstruction and visual odometry [C]// Proceedings of the 2013 IEEE International Conference on Electronics Computer and Computation.Piscataway:IEEE Press,2013:115-118.
  • 4McDONALD J,KAESS M,CADENA C.Real-time 6-DOF multi-session visual SLAM over large scale environment [J].Robotics and Autonomous Systems,2012,61(10):1144-1158.
  • 5KNEIP L,CHLI M,SIEGWART R.Robust real-time visual odometry with a single camera and an IMU [C]// Proceedings of the 2011 British Machine Vision Conference.Durham:BMVC Press,2011:16.1-16.11.
  • 6WHELAN T,JOHANNSSON H,KAESS M,et al.Robust real-time visual odometry for dense RGB-D mapping [C]// Proceedings of the 2013 IEEE International Conference on Robotics and Automation.Piscataway:IEEE Press,2013:5724-5731.
  • 7DRYANOVSKI I,VALENTI R G,XIAO J.Fast visual odometry and mapping from RGB-D data [C]// Proceedings of the 2013 IEEE International Conference on Robotics and Automation.Piscataway:IEEE Press,2013:2305-2310.
  • 8KLUSSENDORFF J H,HARTMANN J,FOROUHER D,et al.Graph-based visual SLAM and visual odometry using an RGB-D camera [C]// Proceedings of the 2013 9th Workshop on Robot Motion and Control.Piscataway:IEEE Press,2013:288-293.
  • 9SCARAMUZZA D,FRAUNDORFER F.Visual odometry [J].Robotics and Automation Magazine,2011,18(4):80-92.
  • 10SIEGWART R,NOURBAKHSH I,SCARAMUZZA D.Introduction to autonomous mobile robots [M].Cambridge:Massachusetts Institute of Technology Press,2011:265-366.

共引文献9

同被引文献24

  • 1YAN K, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors [ C ]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2004 :506-513.
  • 2BAY H, ESS A, TUYTELAARS T, et al. Speeded up robust features(SURF) [J].Computer vision and image understanding.Berlin: Springer, 2008,110(3) ..346-359.
  • 3CALONDER M, LEPTETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features [C]//Proceedings of the 11th European Conference on Computer Vision.Berlin : Springer, 2010 .. 778-792.
  • 4LEUTENEGGER S, CHLI M, SIEGWART R. BRISK: binary robust invariant scalable keypoints [C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).Piscataway.. IEEE, 2011 : 2548- 2555.
  • 5ALAHI A, ORTIZ R, VANDERGHEYNS P. FREAK : fast retina keypoint [C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway : IEEE, 2012 : 510-517.
  • 6田文,王宏远,徐帆,方磊.RANSAC算法的自适应T_(c,d)预检验[J].中国图象图形学报,2009,14(5):973-977. 被引量:20
  • 7罗仕鉴,朱上上,应放天,张劲松.手机界面中基于情境的用户体验设计[J].计算机集成制造系统,2010,16(2):239-248. 被引量:84
  • 8许允喜,蒋云良,陈方.惯性组合导航系统中基于BRISK的快速景象匹配算法[J].光电子.激光,2012,23(8):1589-1596. 被引量:16
  • 9朱长军,王民钢,王超,杨尧,邱锋.地面背景下基于SURF的红外目标识别方法[J].红外技术,2013,35(9):551-554. 被引量:7
  • 10李文明,吕福玉.移动网络内容的生产与营销[J].宁夏大学学报(人文社会科学版),2014,36(3):175-184. 被引量:5

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部