期刊文献+

基于小波变换的脑部医学Demons图像配准 被引量:3

Demons Brain-medical Image Registration Based on Wavelet Transform
下载PDF
导出
摘要 非刚性配准是医学图像处理的一个重要研究方向;针对Demons衍生出的一系列经典的配准算法在医学图像应用上计算复杂、方向信息不足问题进行了研究;基于光流场模型的Demons算法依赖图像灰度梯度使图像发生变形,当缺乏梯度信息时,力不能确定,因而容易造成误差,并且该算法仅适合于单模态图像配准;为此文章提出了一种基于小波变换理论的频域Demons配准处理方法(BDemons);该方法利用小波变换能够对各个尺度、方向和位置实现较好定位的优势,通过高频、低频的图像变换反映出图像的特征信息;实验结果证明了算法的有效性和鲁棒性。 Non-rigid registration is an important research direction of medical image processing.For Demons derived from a series of classic registration algorithms on the computational complexity of medical imaging applications,the direction of the problem of lack of information were studied.Demons algorithm based on optical flow field model is dependent on the image gray gradient image is deformed when the lack of gradient information,the force can not be determined,and thus likely to cause the error,and the algorithm is only suitable for single- mode image registration.Therefore,we propose a frequency-domain Demons registration processing method based on wavelet transform theory CB-Demons).The method uses the wavelet transform can realize the benefits of better positioning on each scale,orientation and location information of the image reflected characteristics by the high frequency,low frequency of image transformation.Experimental results show that the algorithm is effective and robust.
出处 《计算机测量与控制》 2015年第7期2515-2517,共3页 Computer Measurement &Control
基金 国家自然基金(61105085 61373127)
关键词 DEMONS算法 小波变换 非刚性配准 图像变换 demons algorithm wavelet transform non-rigid registration image transformation
  • 相关文献

参考文献7

  • 1Heyde B, Jasaityte R, Barbosa D, et al. Elastic image registration versus speckle tracking for 2-D myocardial motion estimation: a di- rect comparison in vivo [J]. Medical Imaging, IEEE Transactions on, 2013, 32 (2): 449-459.
  • 2Pan M, Jiang J, Rong Q, et al. A modified medical image regis- tration [J]. Multimedia Tools and Applications, 2014, 70 (3): 1585 - 1615.
  • 3Gu Z Y, Du C M, Jin L, et al. Medical Image Registration Corn bined with SURF and Improved RANSAC Algorithm [J]. Applied Mechanics and Materials, 2013:1233 - 1237.
  • 4潘婷婷,陆丽婷,顾绮芳.QPSO算法和Powell法结合的多分辨率医学图像配准[J].计算机应用与软件,2014,31(7):237-240. 被引量:3
  • 5Hwuang E, Danish S, Rusu M, et al. Anisotropic smoothing reg- ularization (AnSR) in Thirion's Demons registration evaluates brain MRI tissue changes post-laser ablation. [A]. Annual Internation- al Conference of the IEEE Engineering in Medicine and Biology Soci- ety [C]. 2013.
  • 6Thomas Yeo B, Sabuneu M, Vercauteren T, et al. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 [M]. Springer Berlin Heidelberg, 2008:745 - 753.
  • 7赵钰,朱俊平,亢娟娜.改进的区域互信息和小波变换的图像配准[J].计算机工程与应用,2013,49(21):152-155. 被引量:6

二级参考文献10

共引文献7

同被引文献37

  • 1李俊山,马颖,赵方舟,郭莉莎.改进的Canny图像边缘检测算法[J].光子学报,2011,40(S1):50-54. 被引量:64
  • 2张懿,刘旭,李海峰.自适应图像直方图均衡算法[J].浙江大学学报(工学版),2007,41(4):630-633. 被引量:40
  • 3孙根云,柳钦火,刘强,李小文.图像的模糊边缘检测算法[J].光电工程,2007,34(7):141-144. 被引量:14
  • 4Parker J R. Algorithms for image processing and computer vision [M]. John Wiley & Sons, 2010.
  • 5Halder S, Bhattacharjee D, Nasipuri M, et al. A fast FPGA based architecture for sobel edge detection. Progress in VLSI Design and Test [M]. Springer Berlin Heidelberg, 2012: 300-306.
  • 6Zhang H, Zhu Q, Guan X. Probe into Image Segmentation Based on Sobel Operator and Maximum Entropy Algorithm [A]. 2012 Inter- national Conference on Computer Science & Service System (CSSS) [C]. IEEE, 2012, 238-241.
  • 7McIlhagga W. The canny edge detector revisited [J]. International Journal of Computer Vision, 2011, 91 (3) : 251-261.
  • 8Garcia Lamont J. Analogue CMOS prototype vision chip with pre- witt edge processing [J]. Analog Integrated Circuits and Signal Processing, 2012, 71 (3): 507-514.
  • 9Fiorio C, Mercat C, Rieux F. Adaptive discrete Laplace operator [M]. Advances in Visual Computing. Springer Berlin Heidelberg, 2011: 377-386.
  • 10Gai S, Yang G, Wan M, et al. Hidden Markov tree model of ima ges using quaternion wavelet transform [J]. Computers & Electrical Engineering, 2014, 40 (3)= 819-832.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部