期刊文献+

设施POI的局部空间同位模式挖掘及范围界定 被引量:17

Regional Co-location Pattern Mining and Scoping from Urban Facility POI
下载PDF
导出
摘要 不同类型城市基础设施之间具有较强的空间相关性,旨在发现该类知识的空间同位模式挖掘(Spatial Co-location Pattern Mining)可为商业布局、城市规划和区域管理等应用提供重要的决策支持。然而,传统的同位模式分析方法往往基于全局统计指标,容易忽略空间关系在局部地理范围内的强显著性。该文针对该缺陷,给出了局部普遍性度量指标,并基于地理学第一定律的区位影响构建邻近关系影响域,进而界定同位特征显著的局部范围。通过深圳市POI点同位模式挖掘实验,分析了POI基础设施在城市空间分布上的关联模式与依赖关系,评价结果表明,该方法较其他挖掘方法具有更高的可靠性。 Different types of urban facilities usually appear together, which have strong spanal associanon. The spanal co-loca- tion pattern mining, which aims to discover this type of knowledge, can be utilized to support many applications, such as com- mercial layout, urban planning and regional management. However, traditional co-location pattern mining usually adopts the global statistical index, which tends to neglect the strong significance of spatial relationship in regional geographic areas. Consid- ering this problem, a regional prevalence index is proposed in this paper, and the impact area of neighborhood is constructed based on the regional impact of the First Law of Geography, and thereby significant areas of co-location patterns can be delimita- ted. The actual data experiment for mining the POIs' co-location patterns is used to analyze spatial association characteristics of the POI infrastructure in Shenzhen City. The assess result indicates that this approach is more reliable than other methods.
出处 《地理与地理信息科学》 CSCD 北大核心 2015年第4期6-11,共6页 Geography and Geo-Information Science
基金 国家863计划项目(2012AA12A404) 国家科技支撑计划项目(2012BAJ22B02-01) 数字制图与国土信息应用工程国家测绘地理信息局重点实验室开放基金项目(DM2014SC07) 四川测绘地理信息局2014年科技项目(J2014ZC15) 国土资源部城市土地资源监测与仿真重点实验室开放基金资助项目(KF-2015-01-038)
关键词 空间数据挖掘 同位模式 范围界定 城市设施 POI spatial data mining co-location pattern scoping urban facility POI
  • 相关文献

参考文献17

  • 1MILLER H J,HAN J.Geographic Data Mining and Knowledge Discovery[M].CRC Press,2009.
  • 2KOPERSKI K,HAN J.Discovery of spatial association rules in geographic information databases[A].Advances in Spatial Databases[C].Springer Berlin Heidelberg,1995.47-66.
  • 3AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules[A].Proc.20th Int.Conf.Very Large Data Bases,VLDB[C].1994,1215:487-499.
  • 4李德仁,王树良,史文中,王新洲.论空间数据挖掘和知识发现[J].武汉大学学报(信息科学版),2001,26(6):491-499. 被引量:180
  • 5SHEKHAR S,HUANG Y.Discovering spatial co-location patterns:A summary of results[A].Advances in Spatial and Temporal Databases[C].Springer Berlin Heidelberg,2001.236-256.
  • 6YOO J S,SHEKHAR S,CELIK M.A join-less approach for colocation pattern mining:A summary of results[A].Data Mining,Fifth IEEE International Conference on IEEE[C].2005.4.
  • 7YOO J S,BOW M.Mining spatial colocation patterns:A different framework[J].Data Mining and Knowledge Discovery,2012,24(1):159-194.
  • 8HUANG Y,SHEKHAR S,XIONG H.Discovering colocation patterns from spatial data sets:A general approach[J].Knowledge and Data Engineering,2004,16(12):1472-1485.
  • 9QIAN F,HE Q,CHIEW K,et al.Spatial co-location pattern discovery without thresholds[J].Knowledge and Information Systems,2012,33(2):419-445.
  • 10苏奋振,杜云艳,杨晓梅,刘宝银.地学关联规则与时空推理的渔业分析应用[J].地球信息科学,2004,6(4):66-70. 被引量:6

二级参考文献56

共引文献206

同被引文献233

引证文献17

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部