期刊文献+

间隔联合应用BAM8-22增强慢性吗啡抑制c-Fos表达的作用

Intermittent Co-administration of BAM8-22 Enhances the Inhibition of Chronic Morphine on Formalin-evoked c-Fos Expression
原文传递
导出
摘要 通过观察腰段脊髓背角c-Fos阳性神经元数量变化,探讨鞘内间隔联合应用牛肾上腺髓质8-22肽(bovine adrenal medulla 8-22,BAM8-22)在福尔马林引起的持续性痛中对吗啡耐受的影响.结果显示,连续6 d应用吗啡导致耐受(吗啡耐受组)后,福尔马林诱发的c-Fos阳性神经元数量明显增加,与吗啡组相比,其脊髓Ⅰ-Ⅱ、Ⅲ-Ⅳ和Ⅴ-Ⅵ层c-Fos阳性神经元分别增加了164.9%、131.5%和125.3%(P〈0.05~0.01);但隔天给予BAM8-22(吗啡+BAM8-22组)则能明显增强慢性吗啡抑制c-Fos阳性神经元的表达,与吗啡耐受组相比,其脊髓Ⅰ-Ⅱ和Ⅴ-Ⅵ层c-Fos阳性神经元数量分别下降了66.6%和48.8%(P〈0.05~0.01).在福尔马林引起的持续性痛中,BAM8-22延缓吗啡耐受是通过抑制脊髓背角伤害性神经元的活性来实现的。 The present study was designed to investigate the effects of intermittent co-administration of bovine adrenal medulla 8-22( BAM8-22) on morphine tolerance through examining the expression of c-Fos in the lumbar spinal cord in formalin test. The results showed that formalin-evoked c-Fos positive neurons were remarkably increased in morphine tolerance when morphine was administrated daily for 6 days. The number of c-Fos positive neurons increased by 164. 9%,131. 5% and125. 3% in laminae Ⅰ- Ⅱ、Ⅲ- Ⅳ and Ⅴ- Ⅵ,respectively,compared with morphine group( P 0. 05 ~ 0. 01). Intermittent co-administration of BAM8-22( morphine plus BAM8-22 group)remarkably enhanced the inhibition of chronic morphine on formalin-evoked c-Fos expression,the number of c-Fos positive neurons decreased by 66. 6% and 48. 8% in laminae Ⅰ- Ⅱ and Ⅴ- Ⅵ,respectively,compared with morphine in tolerant group( P 0. 05 ~ 0. 01). The present study provided evidence at a cellular level showing that BAM8-22 attenuate morphine tolerance by inhibiting the activation of nociceptive neurons in the spinal dorsal horn in formalin-induced persistent pain.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期82-86,共5页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(2014J01305) 福建省教育厅重点项目(JA14072)
关键词 牛肾上腺髓质8-22肽(BAM8-22) 吗啡耐受 持续性痛 福尔马林实验 c-Fos阳性神经元 bovine adrenal medulla 8-22 (BAM8-22) morphine tolerance persistent pain formalin test c-Fos positive neurons
  • 相关文献

参考文献19

  • 1Lembo P M, Grazzini E, Groblewski T, et al. Proenkephalin A gene products activate a new family of sensory neuron-spe- cific GPCRs [J]. Nat Neurosci, 2002, 5 (3):201-209.
  • 2Dong X, Han S, Zylka M J, et al. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons [J]. Cell, 2001, 106 (5): 619-632.
  • 3Chen T, Cai Q, Hong Y. Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (Tyr6) - gamma2-MSH-6-12 inhibit formalin-evoked nociception and neuronal Fos-like immunoreactivity in the spinal cord of the rat [J]. Neuroscience, 2006, 141 (2):965-975.
  • 4Jiang J, Wang D, Zhou X, et al. Effect of Mas-related gene (Mrg) receptors on hyperalgesia in rats with CFA-induced inflammation via direct and indirect mechanisms [J]. Brit J Pharmacol, 2013, 170 (5) : 1027 -1040.
  • 5Cai Q, Jiang J, Chen T, et al. Sensory neuron-specific receptor agonist BAM8-22 inhibits the development and expression of tolerance to morphine in rats [J]. Behav Brain Res, 2007, 178 (1) : 154 -159.
  • 6Jiang J, Huang J, Hong Y. Bovine adrenal medulla 22 reverses antinociceptive morphine tolerance in the rat [ J ]. Behav Brain Res, 2006, 168 (1) : 167-171.
  • 7江剑平,胡粉娟,陈雅娟.牛肾上腺髓质8-22肽在福尔马林持续性痛中对吗啡耐受的调制[J].福建师范大学学报(自然科学版),2013,29(4):96-102. 被引量:2
  • 8江剑平,陈雅娟,洪炎国.椎管内注射牛肾上腺髓质22肽差异性翻转吗啡耐受作用[J].生理学报,2006,58(6):529-535. 被引量:7
  • 9Molander C, Xu Q, Grant G. The cytoarchitectonic organization of the spinal cord in the rat. I : The lower thoracic and lumbosacral cord [J]. J Comp Neurol, 1984, 230 (1): 133 -141.
  • 10Buritova J, Besson J M. Effects of flurbiprofen and its enantiomers on the spinal c-Fos protein expression induced by nox- ious heat stimuli in the anaesthetized rat [ J ]. Eur J Pharmacol, 2000, 406 ( 1 ) : 59 - 67.

二级参考文献48

  • 1聂红,王航,张瑞新,高旺才,乔健天.蛋白激酶C部分参与伤害性刺激在脊髓背角神经元中引起的c-fos蛋白的表达而可能不参与阿片受体对脊髓痛感受的调制(英文)[J].生理学报,2004,56(4):455-460. 被引量:2
  • 2江剑平,陈雅娟,洪炎国.椎管内注射牛肾上腺髓质22肽差异性翻转吗啡耐受作用[J].生理学报,2006,58(6):529-535. 被引量:7
  • 3Dores RM, Mcdonald LK, Steveson TC, Sei CA. The molecular evolution of neuropeptides: prospects for the ?0s. Brain Behav Evol 1990; 36(2-3): 80-99.
  • 4Khachaturian H, Lewis ME, Watson SJ. Colocalization of proenkephalin peptides in rat brain neurons. Brain Res 1983; 279(1-2): 369-373.
  • 5Pittius CW, Seizinger BR, Pasi A, Mehraein P, Herz A. Distribution and characterization of opioid peptides derived from proenkephalin A in human and rat central nervous system. Brain Res 1984; 304(1): 127-136.
  • 6Maderdrut JL, Merchenthaler I, Sundberg DK, Okado N, Oppenheim RW. Distribution and development of proenkephalin-like immunoreactivity in the lumbar spinal cord of the chicken. Brain Res 1986; 377(1): 29-40.
  • 7Garzon J, Sanchez-Blazquez P, Hollt V, Lee NM, Loh HH. Endogenous opioid peptides: comparative evaluation of their receptor affinities in the mouse brain. Life Sci 1983; 33(1): 291-294.
  • 8Dray A, Nunan L, Wire W. Proenkephalin A fragments exhibit spinal and supraspinal opioid activity in vivo. J Pharmacol Exp Ther 1985; 235(3): 670-676.
  • 9Lembo PM, Grazzini E, Groblewski T, O'Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Strom P, Payza K, Dray A, Walker P, Ahmad S. Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci 2002; 5(3): 201-209.
  • 10Quirion R, Weiss AS. Peptide E and other proenkephalin-derived peptides are potent kappa opiate receptor agonists. Peptides 1983; 4(4): 445-449.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部