期刊文献+

基于consR的并行图匹配方法

Parallel Graph Matching Method Based on consR Algorithm
下载PDF
导出
摘要 随着社交网络、生物网络规模的迅速扩大,能够快速、高效地实现对这些网络的匹配、查询等工作已经成为许多应用领域的迫切需求。给定两个网络图,图匹配的过程即为对图G1中的每个节点在图G2中找到唯一一个相对应的最为相似的节点,使得给定的两个图的匹配边的数量最多。文中基于大图匹配方法 consR,进行了两方面的优化:当图的节点数目较少时,优化了图G1、G2的相似性矩阵计算策略,从而使得图匹配的计算更加快捷;当图的节点数目较大时,针对匹配过程中最为耗时的步骤进行并行优化处理。实验结果表明,在与consR方法计算出的匹配结果保持一致的情况下,一定程度上缩短了图匹配计算时间。 With the rapid enlargement of the size of social network and biology network, how to implement the network matching and querying fast and efficiently has become an urgent need in many application research. Given two graphs Gl and G2 ,the task of graph mate- hing is to find,for each node in G1 ,the most similar node in G2 to maximize the number of matched edges. In this paper,based on the ef- fective large graph matching method consR,improve its efficiency from two aspects. When the number of nodes in the graph is relatively small, the computation cost for similarity matrix of G1 and G2 is reduced by a simplified yet effective computing strategy. When the number of nodes is large, adopt parallel strategy to speed up the matching procedure for large graphs. The experimental results show that the pro- posed method reduces the computation time of image matching at a certain extent while gets as good matching results as consR does.
出处 《计算机技术与发展》 2015年第7期20-26,共7页 Computer Technology and Development
基金 国家自然科学基金重大研究计划项目(91330116) 上海市科委重点项目(11510500300) 高等学校博士学科点专项科研基金(20113108120022)
关键词 图匹配 consR算法 归并排序 并行化 graph matching consR algorithm merge sort parallelism
  • 相关文献

参考文献19

  • 1Li Zhenping, Zhang Shihua, Wang Yong, et al. Alignment of molecular networks by integer quadratic programming [ J ]. Bioinformatics,2007,23 ( 13 ) : 1631 - 1639.
  • 2马进,谢江,戴东波,谭军,张武.用于生物分子网络比对的自适应匈牙利贪心混合算法的并行化[J].计算机应用,2013,33(12):3321-3325. 被引量:2
  • 3Finn P W, Kavraki L E, Latombe Jean-Claude, et al. RAPID :randomized pharmacophore identification for drug design [ J ]. Computational Geometry, 1998,10 (4) :263-272.
  • 4Berg A C,Berg T L, Malik J. Shape matching and object rec- ognition using low distortion correspondences [ C ]//Proc of IEEE computer society conference on computer vision and pattern recognition. [ s. 1. ] : IEEE ,2005:26-33.
  • 5Chen Hwann- Tzong, Lin Horng - Homg, Liu Tyng - Luh. Multi -object tracking using dynamical graph matching[ C ]//Proc of IEEE computer society conference on computer vision and pattern recognition. [ s. 1. ] :IEEE,2001:210-217.
  • 6Livi L,Rizzi A. The graph matching problem[J]. Pattern Anal App1,2013,16 ( 3 ) :253-283.
  • 7Etheredge M. Fast exact graph matching using adjacency ma- trices [ C ]//Proceedings of the third workshop on procedural content generation. New York, NY, USA: ACM,2012.
  • 8Riesen K, Jiang Xiaoyi, Bunke H. Exact and inexact graph matching: methodology and applications [ J ]. Managing and Mining Graph Data Advances in Database Systems ,2010,40 : 217-247.
  • 9Tian Yuanyuan, McEachin R C, Santos C, et al. SAGA : a sub- graph matching tool for biological graphs [ J ]. Bioirfformatics, 2007,23 (2) :232-239.
  • 10He Huahai, Singh A K. Closure-tree:an index structure for graph queries [ C ]//Proceedings of the 22nd international con- ference on data engineering. [ s. 1. ] :[ s. n. ] ,2006.

二级参考文献13

  • 1CHINDELEVITCH L, LIAO C-S, BERGER B. Local optimization for global alignment of protein interaction networks[C] / / Proceed?ings of Pacific Symposium on Biocomputing 2010. Singapore: World Scientific Publishing, 2010: 123 - 132.
  • 2KEELEY B P, YUAN B, LEWITTER F, et at. PathBLAST: a tool for alignment of protein interaction networks[J]. Nucleic Acids Re?search, 2004, 32( Web-Server-Issue): 83 - 88.
  • 3LI Z P, ZHANG S H, WANG Y, et at. Alignment of molecular net?works by integer quadratic programming[J]. Bioinformatics, 2007, 23( 13): 1631 -1639.
  • 4SINGH R, XUJ B, BERGER B. Pairwise global alignment of pro?tein interaction networks by matching neighborhood topology[C I / / RECOMB'07: Proceedings of the 11th Annual International Confer?ence on Research in Computational Molecular Biology, LNCS 4453. Berlin: Springer-Verlag, 2007: 16 - 31.
  • 5LIAO C-S, LU K H, BAYM M, et at. IsoRankN: spectral methods for global alignment of multiple protein networks[J]. Biocomputing, 2009, 25( 12): 253 -258.
  • 6KUCHAIEV 0, PRZUU N. Integrative network alignment reveals large regions of global network similarity in yeast and human[J] . Bioinformatics, 2011, 27( 10): 1390 -1396.
  • 7ATlAS N, SHARAN R. Comparative analysis of protein networks: hard problems, practical solutions[J]. Communications of the ACM, 2012, 55(5): 88-97.
  • 8谭军.蛋白质相互作用网络比对的自适应混合并行算法研究[D].上海:上海大学,2013.
  • 9KUHN H W. The Hungarian method for the assignment problem[M] / / 50 Years of Integer Programming 1958-2008. Berlin: Springer-Verlag, 2010: 29 -47.
  • 10KUHN H W. A tale of three eras: the discovery and rediscovery of the hungarian method[J]. EuropeanJournal of Operational Re?search, 2012, 219(3): 641 -651.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部