期刊文献+

碳纳米管纱的时间依赖电性能(英文)

Time-dependent electrical properties of carbon nanotube yarns
下载PDF
导出
摘要 碳纳米管(CNTs)在电力转换领域具有潜在前景。本文表征碳纳米管纱随时间变化对电力的转换性能影响。通过建立I-V关系,结果表明存在3个区域,即线性、非线性和下降区域。线性区域表明呈现低且恒定电阻。当恒定电压处于I-V线性区域时,输出电流强度不随时间而改变。然而,当恒定电压处于非线性区域时,电流强度以指数级下降后随时间而趋平。在恒电流测试下,电压仅在电流强度处于非线性区时增加。依赖时间的导电性能可通过短路来理解。短路发生在非线性区域的碳纳米管纱中炽热部位,会导致热性能降低。通过热图像、热重分析、扫描电镜和能谱分析等手段对碳纳米管纱进行分析。 Carbon nanotubes ( CNTs) are projected as a desirable option to transmit electrical power where specific conductivity is an important consideration. A CNT-yarn was therefore characterized for its ability to transmit power as a function of time. A current-voltage ( I-V) relationship was established that showed three distinct regions: linear, non-linear and finally its degradation. The linear region shows a low and constant resistance. The output current did not change with time when the applied constant voltage was in the linear region of the I-V relationship. However, when the applied constant voltage was in the non-linear region the current decreased exponentially and leveled off with time. Under constant current tests, voltage increased only when current level was in the non-linear region. These time-dependent electrical conducting properties can be accounted for by short circuits occurring from the development of a localized red-hot spots in the CNT-yarn in the non-linear region, leading to thermal degradation, as revealed by thermal imaging of the yarn, thermal gravimetric analysis of the CNTs, and SEM images and EDAX of the thermally degraded CNT-yarn.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2015年第3期207-213,共7页 New Carbon Materials
基金 partially supported by the U.S. Air Force Office of Scientific Research(Dr.J.Harrison,AFOSR),Washington,DC
关键词 碳纳米管 电性能 时间依赖 铁球 Carbon nanotubes Yarns Electrical properties Time-dependent properties Iron spheres
  • 相关文献

参考文献22

  • 1Harris P J F.Carbon Nanotube Science:Synthesis,Properties and Applications[M].Cambridge:Cambridge University Press Cambridge,2009.
  • 2Zhang M,Atkinson K R,Baughman R H.Multifunctional carbon nanotube yarns by downsizing an ancient technology[J].Science,2004,306:1358-1361.
  • 3Tran C D,Humphries W,Smith S M,et al.Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process[J].Carbon,2009,47:2662-2670.
  • 4Zhang X,Jiang K,Feng C,et al.Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays[J].Advanced Materials,2006,18:1505-1510.
  • 5Lu W,Zu M,Byun J H,et al.State of the art of carbon nanotube fibers:opportunities and challenges[J].Advanced Materials,2012,24:1805-1833.
  • 6Misak H E,Mall S.Investigation into microstructure of carbon nanotube multi-yarn[J].Carbon,2014,72:321-327.
  • 7Misak H E,Sabelkin V,Mall S,et al.Failure analysis of carbon nanotube wires[J].Carbon,2012,50:4871-4879.
  • 8Zhang X,Li Q,Holesinger T G,et al.Ultrastrong,stiff,and lightweight carbon-nanotube fibers[J].Advanced Material,2007,19:4198-4201.
  • 9Jakubinek M B,Johnson M B,White M A,et al.Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns[J].Carbon,2012,50:244-248.
  • 10Misak H E,Sabelkin V,Mall S,et al.Thermal fatigue and hypothermal atomic oxygen exposure behavior of carbon na notube wire[J].Carbon,2013,57:42-49.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部