期刊文献+

固体电解质Li_5La_3Ta_2O_(12)包覆LiMn_2O_4的改性研究 被引量:2

Modification of Li_5La_3Ta_2O_(12) coated LiMn_2O_4
下载PDF
导出
摘要 采用溶胶-凝胶的方法低温制备石榴石结构的固体电解质Li5La3Ta2O12,并用其包覆Li Mn2O4来改善材料的电化学性能。通过XRD,SEM和TEM等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安、交流阻抗等测试分析材料的电化学性能。研究结果表明:Li5La3Ta2O12包覆的Li Mn2O4材料与未包覆的材料相比,其电化学性能得到明显改善,经过150次循环后包覆材料的放电比容量保持率为92%,在高倍率10C(C为倍率)下包覆材料放电比容量为61.2 m A·h/g,而未包覆材料放电比容量仅为40.7 m A·h/g;包覆Li5La3Ta2O12后,Li Mn2O4的阻抗明显减小,大幅度提高了其循环性能和倍率性能。 Li Mn2O4,Li5La3Ta2O12(LLTO) was prepared by sol-gel method and it was employed as a coating layer on the surface of Li Mn2O4. The structure and morphology of the material were analyzed by XRD, SEM and other characterization methods. The electrochemical performance of the material was analyzed by galvanostatic charge-discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the electrochemical performance of the LLTO-coated Li Mn2O4 is improved significantly. The resistance of LLTO-coated Li Mn2O4 is reduced significantly. After 150 cycles test, the discharge capacity retention rate of the coated material is92%.At the high-rate of 10 C, the discharge capacity of the LLTO-coated Li Mn2O4 is 61.2 m A·h/g and that of the uncoated material is 40.7 m A·h/g. The impedance of LLTO-coated Li Mn2O4 decreases evidently, therefore the cycle performance and rate capability increase greatly.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期1595-1601,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51372278) 湖南省科技厅项目(2010RS4015) 湖南省知识产权局项目(2014e004) 中南大学贵重仪器设备共享基金资助项目(CSUZC2014020)~~
关键词 溶胶-凝胶法 Li5La3Ta2O12 包覆 LI MN2O4 sol-gel method Li5La3Ta2O12 coating Li Mn2O4
  • 相关文献

参考文献26

  • 1李运姣,常建卫,李洪桂,赵中伟,孙召明,霍广生,孙培梅.富锂型掺钴尖晶石锂锰氧化物的结构与电化学性能[J].中南大学学报(自然科学版),2004,35(3):381-385. 被引量:14
  • 2Thackeray M M.Manganese oxides for lithium batteries[J]. Progress in Solid State Chemistry,1997,25(1):1-71.
  • 3陈立宝,贺跃辉,汤义武.采用固相配位法制备超细LiMn_2O_4正极材料[J].中南大学学报(自然科学版),2005,36(3):390-395. 被引量:12
  • 4Thackeray M M.Structural considerations of layered and spinel lithiated oxides for lithium ion batteries[J].Journal of the Electrochemical Society,1995,142(8):2558-2563.
  • 5Etacheri V,Marom R,Elazari R,et al.Challenges in the development of advanced Li-ion batteries:A review[J].Energy & Environmental Science,2011,4(9):3243-3262.
  • 6SUN Huaibing,CHEN Yungui,XU Chenghao,et al. Electrochemical performance of rare-earth doped LiMn2O4 spinel cathode materials for Li-ion rechargeable battery[J]. Journal of Solid State Electrochemistry,2012,16(3):1247-1254.
  • 7Hibino M,Nakamura M,Kamitaka Y,et al.Improvement of cycle life of spinel type of lithium manganese oxide by addition of other spinel compounds during synthesis[J].Solid State Ionics,2006,177(26/32):2653-2656.
  • 8LIU Dongqiang,LIU Xingquan,HE Zezheng.Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4[J].Journal of Alloys and Compounds,2007,436(1):387-391.
  • 9LIU Dongqiang,HE Zeqiang.Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries[J].Materials Letters,2007,61(25):4703-4706.
  • 10Moon H S,Lee S W,Lee Y K,et al.Characterization of protective-layer-coatedcathode thin films[J].Journal of Power Sources,2003,119(10/11):713-716.

二级参考文献44

  • 1Jiang C H, Dou S X, Liu H K,et al. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction [ J ]. Jurnal of Power Sources ,2007,172 ( 1 ) :410 -415.
  • 2Cabana J,Valdes S,Palacin T,et al. Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route[ J]. Journal of Power Sources,2007,166 ( 2 ) : 492 - 498.
  • 3Zhao M S, Song X P. Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material [ J ]. Journal of Power Sources,2007,164 ( 2 ) :822- 828.
  • 4Amatucci G G,Schmutz C N,Blyr A,et al. Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries[ J ]. Journal of Power Sources, 1997,69 ( 1/2 ) : 11 - 25.
  • 5Wohlfahrt-Mehrens M, Vogler C, Garche J. Aging mechanisms of lithium cathode materials[ J]. Journal of Power Sources,2004,127 (1/2) :58 -64.
  • 6Xia Y,Zhou Y,Yoshio M. Capacity fading on cycling of 4 V Li/ LiMn2 O4 cells [ J ]. Journal of Electrochemistry Society, 1997,144 ( 8 ) :2593 - 2600.
  • 7Gnanaraj J S, Pol V G, Gedanken A, et al. Improving the high- temperature performance of LiMn2 O4 spinel electrodes by coating the active mass with MgO via a sonochemical method [ J ]. Electrochemistry Communications ,2003,5 ( 11 ) :940 - 945.
  • 8Ha H W, Yun N J, Kim K. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries [ J ]. Electrochimica Acta,2007,52 ( 9 ) : 3236 - 3241.
  • 9Liu H, Cheng C,Zong Q,et al. The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries [ J ]. Materials Chemistry and Physics,2007,101 ( 5 ) : 276 - 279.
  • 10Arora P,Popov B N,White R E.Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries[J].J Electrochem Soc,1998,145(3):807-815.

共引文献25

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部