期刊文献+

基于统计分布熵的抑郁症脑电信号分析

Analysis of Depression Electroencephalogram Based on Statistics Distribution Entropy
下载PDF
导出
摘要 针对目前抑郁症研究和诊断中量化分析参数和分析方法不足的情况,本文提出和定义一种能对脑电活动的状态分布进行描述、并能用来计算和区分抑郁症患者和正常人脑电活动差异的统计分布熵方法。应用该方法对抑郁症患者和正常对照组的脑电信号统计分布熵进行数值计算,然后分析讨论它们之间的差异,最后对结果进行了统计分析。实验结果表明:抑郁症患者脑电的状态分布熵在部分脑区显著高于正常健康人,表现出较强的差异性。证明该统计分布熵能够表征大脑电活动的分布状态,提供反映其活动是否发生异变的信息,可以作为度量大脑电活动分布状态和分析脑电信号是否异常的一个物理参数。这对其用作诊断其他脑精神疾病的物理指标也具有积极意义。 A method is proposed to calculate and analyze electroencephalogram to improve the situation in which there is an emergency for the effective quantitative parameters for mental disorders. The method first defines a statistics distribution entropy to describe the state distribution of brain electrical activity, which can calculate and analyze the state difference of it. The entropy is applied to numerical calculation of electroencephalogram signal between depression patients and normal control group. Meanwhile, the difference is compared between them. The experiment shows that the statistics distribution entropy in depression patients is significantly greater than that of the normal healthy people in some brain regions. Further analysis proves that the entropy can be used as a parameter to measure the state distribution of brain electrical activity and to analyze its difference. The analysis also tells that the entropy plays an important role in diagnosis of other mental disorder.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2015年第2期29-35,共7页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)项目(2014CB744605 2014CB744603) 国家国际科技合作专项基金资助项目(2013DFA32180) 国家自然科学基金资助项目(61272345)
关键词 统计分布熵 脑电信号 抑郁症 statistics distribution entropy electroencephalogram depression
  • 相关文献

参考文献11

  • 1CHEN Min-you, FANG Yong-hui, ZHENG Xu-fei. Phase space reconstruction for improving the classification of single trial EEG[J]. Biomedical Signal Processing and Control, 2014, 11:10-16.
  • 2LEE S H, LIM J S, KIM J K, et al. Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distanee[J]. Computer Methods and Programs in Biomedicine, 2014, 116(1) :10-25.
  • 3WANG Jing, WE Ying-ying, QU Hao, et al. EEG-based fatigue driving detection using correlation dimension[J]. Journal of Vibroengineering, 2014, 16(1):407-413.
  • 4KOUCHAKI S, SANEI S, ARBON E L, et al.Tensor based singular spectrum analysis for automatic scoring of sleep EEG[J]. IEEE Transactions On Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 2016, 23(1): 1-9.
  • 5ZORICK T, MANDELKERN M A. Multifractal detrended fluctuation analysis of human eeg:preliminary investigation and comparison with the wavelet transform modulus maxima technique[J]. PLOS ONE, 2013, 8(7):e68360.
  • 6STAMOULIS C, SCHOMER D L, CHANG B S. Information theoretic measures of network coordination in high- frequency scalp EEG reveal dynamic patterns associated with seizure termination[J]. Epilepsy Research, 2013, 105 (3) :299-315.
  • 7ZHANG Chong, YU Xiao-lin, YANG Yong, et al. Phase synchronization and spectral coherence analysis of EEG activity during mental fatigue[J]. Clinical EEG and Neuroscience, 2014, 45(4):249-256.
  • 8YANG Chun-feng, Le BOUQUIN J R, BELLANGER J J, et al. A new strategy for model order Identification and its application to transfer entropy for EEG signals analysis[J]. IEEE Transactions on Biomedical Engineering, 2013,60 (5) : 1318-1327.
  • 9IGNACCOLO M, LATKA M, JERNAJCZYK W, et al. The dynamics of EEG entropy[J]. J Biol Phys, 2010,36(2) : 185-196.
  • 10OUYANG Gao-xiong, LI Jing, LIU Xian-zeng, et al. Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis[J]. Epilepsy Research, 2013, 104(3):246-252.

二级参考文献8

  • 1VERHAAK R G W,HOADLIY K A,PURDOM E, et al. Integrated genomie analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,IDH1 ,EGFR,and NF1 [J]. Cancer Cell, 2010,17(1):98-110.
  • 2NOUSHMEHR H ,WEISENBERGER D J ,DIEFES K ,et al. Identi{ication o{ a CpG island methylator phenotype that defines a distinct subgroup of glioma[J]. Cancer Cell, 2010,17 (5) : 510-522.
  • 3YAN Hai ,PARSONS D W,JIN Geng-lin,et al. IDH1 and IDH2 mutations in gliomas[J]. The New England Journal of Medicine, 2009,360 (8) : 765-773.
  • 4GUSTAFSON M P,LIN Yi,NEW K C,et al. Systemic immune suppression in glioblastoma:the interplay between CD14+HLA-DRl/"g monocytes, tumor factors, and dexamethasone [J]. Neuro-Oneology, 2010,12 (7) : 631-644.
  • 5ABATE-SHEN C. Deregulated homeobox gene expression in cancer:cause or consequence? [J]. Nat Rev Cancer, 2002,2(10)=777 785.
  • 6ABDEL FATTAH R ,XIAO A ,BOMGARDNER D,et al. Differential expression of HOX genes in neoplastic and non- neoplastic human astroeytes [J]. J Pathol, 2006,209 (1) : 15 24.
  • 7FREIJE W A,CASTRO-VARGAS F E,FANG Zi-xing,et al. Gene expression profiling of gliomas strongly predicts survival [J]. Cancer Res, 2004,64 (18) : 6503-6510.
  • 8MURAT A,MIGI.IAVACCA E,GORLIA T,et al. Stem cell-related "self-renewal" signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma[J]. J Clin Oncol, 2008,26 (18) : 3015-3024.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部