期刊文献+

历史数据与邻居协作融合的无线传感器故障检测机制 被引量:2

Neighbor-Coordination in Wireless Sensor Network
原文传递
导出
摘要 针对历史数据与邻居协作融合的思想所引生的无线传感器网络故障检测问题,提出了一种检测机制,不仅适用于故障节点随机分布的场景,也适用于故障节点集中分布的场景.仿真结果表明:当节点度数减小、节点故障率升高时,检测精度仍可以维持在96.7%以上.本检测机制只需要交互较少的信息,从而节省了节点的通信能耗和信道带宽. A new fault detection mechanism based on historical data and neighbor-coordination was pres- ented. It gives the combination of detection methods was given based on historical data with the detection ways from neighbor-coordination. Simulation shows that the fault detection mechanism based on historical data and neighbor-coordination can be not only applied to the scene where the nodes are randomly distrib- uted, but also for scenarios in which the failed nodes are intensive. The detection accuracy can reach 96.7% or more although the average degree of the nodes reduces or the failure rate of the nodes increa- ses. In addition, different nodes only communicate few messages with each other in this detection mecha- nism. And thus, the energy of the node and the bandwidth of the channel can be saved.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第B06期1-5,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61272515) 教育部博士点基金项目(20110005110011)
关键词 无线传感器网络 故障检测 残差比 历史数据 邻居协作 集中故障 wireless sensor network fault detection residual ratio history data neighbor-coordination intensive fault
  • 相关文献

参考文献6

  • 1Mini RAF, Loureiro A A F,Nath B. The distinctivedesign characteristic of a wireless sensor network : the en-ergy map [ J ]. Computer Communications,2004,27(10) : 935-945.
  • 2Hsin C, Liu M. Self-monitoring of wireless sensor net-works [J ]. Computer Communications,2006,29 ( 4 ):462-476.
  • 3Barborak M,Dahbura A, Malek M. The consensus prob-lem in fault-tolerant computing [ J ]. ACM ComputingSurvey, 1993, 25: 171-220.
  • 4Jiang P. A new method for node fault detection in wirelesssensor networks[ J]. Sensors, 2009 , 9(2) : 1282-1294.
  • 5董言治,刘松涛,尉志苹,沈同圣,周晓东.基于Matlab的时间序列分析和动态数据建模[J].计算机工程,2003,29(12):170-172. 被引量:15
  • 6杨雅辉.网络流量异常检测及分析的研究[J].计算机科学,2008,35(5):108-112. 被引量:13

二级参考文献38

  • 1孙钦东,张德运,高鹏.基于时间序列分析的分布式拒绝服务攻击检测[J].计算机学报,2005,28(5):767-773. 被引量:55
  • 2任勋益,王汝传,王海艳.基于自相似检测DDoS攻击的小波分析方法[J].通信学报,2006,27(5):6-11. 被引量:56
  • 3[美]汉密尔顿 靳云汇译.时间序列分析[M].北京:中国社会科学出版社,1999..
  • 4[瑞典]帕特-安纳德 斯尤伯格.Matlab5手册[M].北京:机械工业出版社,2000..
  • 5Barford P, Kline J, Plonka D, et al. A signal analysis of network traffic anomalies//Internet Measurement Workshop. Marseille, November 2002/
  • 6Duffield N, Lund C, Thorup M. Estimating Flow Distributions from Sampled Flow Statistics. In ACM SIGCOMM, Karlsruhe, August 2003.
  • 7Magnaghi A, Hamada T, Katsuyama T. A Wavelet-Based Framework for Proactive Detection of Network isconfigurations// SIC, COMM'04 Workshops. Aug. 30 & Sept. 3, 2004.
  • 8Jung J, Krishnamurthy B, Rabinovich M. Flash Crowds and Denial of Service Attacks:Characterization and Implications for CDNs and Web Sites. In WWW, Hawaii, May 2002.
  • 9Kim M-S, Kang H-J, Hung S-C, et al. A Flow-based Method for Abnormal Network Traffic Detection//IEEE/IFIP Network Operations and Management Symposium. Seoul, April 2004.
  • 10Lakhina A, Crovella M, Diot C. Diagnosing Network-W/de Traffic Anomalies. In ACM SIGCOMM. Portland, August 2004.

共引文献26

同被引文献25

  • 1LU Z Q, WEN Y G. Distributed algorithm for gee-structured data aggregation service placement in smart grid[J]. IEEE Systems Journal, 2014, 8(2): 553-561.
  • 2CHANG C Y, LIN C Y, KUO C H. EBDC: an energy-balanced data collection mechanism using a mobile data collector in WSNs [J]. Sen- sors, 2012, 12(5): 5850-5871.
  • 3XUE L, KIM D, ZHU Y. Multiple heterogeneous data ferry trajectory planning in wireless sensor networks[C]//IEEE Conference on Com- puter Communications. Toronto, 2014: 2274-2282.
  • 4LIU X F, CAO J N. Fault tolerant complex event detection in WSNs: a case study in structural health monitoring [J]. IEEE Transactions on Mobile Computing, 2015, 12(14):2502-2515.
  • 5ZHAO M, CHOW T W. Wireless sensor network fault detection via semi-supervised local kernel density estimation[C]//2015 IEEE Inter- national Conference on Industrial Technology (ICIT). Seville, 2015:1495-1500.
  • 6RAVINDRA V K, ASHISH B J. A fault tolerant approach to extend network life time of wireless sensor network[C]//2015 IEEE Interna- tional Conference on Advances in Computing, Communications and Informaties (ICACCI), Kochi, 2015: 993 -998.
  • 7PAOLA A D, GAGLIO S, RE G. Adaptive distributed outlier detection for WSNs[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 888-899.
  • 8YUAN H, ZHAO X X, YU L Y. A distributed Bayesian algorithm for data fault detection in wireless sensor networks[C]//2015 International Conference on Information Networking (ICOIN). Cambodia, 2015: 63-68.
  • 9YANG Y, LIU Q, GAO Z P. Data clustering-based fault detection in WSNs[C]//7th International Conference on Advanced ComputationalIntelligence. Fujian, China, 2015:334-339.
  • 10SENTHIL M, SUGASHINI K, ABIRAMI M. Identification and re- covery of repaired nodes based on distributed hash table in WSN[C]//IEEE Sponsored 2nd International Conference on Innova- tions in Information Embedded and Communication Systems ICIIECS' 15 Coimbatore. 2015:1-4.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部