期刊文献+

采用半定规划多核SVM的语音情感识别 被引量:7

Speech Emotion Recognition Using Semi-Definite Programming Multiple-Kernel SVM
原文传递
导出
摘要 为提高语音情感识别精度,采用二叉树结构设计多分类器,其中使用半定规划法求解并构造多核支持向量机(SVM)分类模型,并采用均方根误差与最大误差对分类器性能进行衡量.对特征选择之后的参数集合进行了测试,结果表明,采用半定规划多核SVM分类模型的情感识别精度达到88.614%,比单核分类模型的识别精度提高了12.376%,且能有效减少误差积累和降低情感状态之间混淆程度. To improve the accuracy of speech emotion recognition, a multi-class classifier with binary- tree structure is adopted, which includes building the multi-kernel support vector machine (SVM) classi- fier model solved by semi-definite programming method, and using the root mean square error and maxi- mum error to evaluate the performance of the classifier. Through the test on the parameter set obtained by feature selection algorithm, the results of experiments show that the total recognition accuracy of the pro- posed multiple-kernel SVM classifier model using semi-definite programming is 88. 614%, which is 12. 376% higher than that of single-kernel SVM model. Moreover the multiple-kernel SVM model can re- duce the total error accumulation and confusion between emotion states.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第B06期67-71,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(51208168) 天津市自然科学基金项目(11JCYBJC00900 13JCYBJC37700) 河北省自然科学基金项目(F2013202254 F2013202102) 河北省引进留学人员基金项目(C2012003038) 济南大学科研基金项目(XKY1317)
关键词 语音情感识别 多核支持向量机 半定规划 speech emotion recognition multiple-kernel support vector machine semi-definite program-ming
  • 相关文献

参考文献9

  • 1张石清,李乐民,赵知劲.人机交互中的语音情感识别研究进展[J].电路与系统学报,2013,18(2):440-451. 被引量:30
  • 2Moataz ELAyadi, Mohamed S Kamel,Fakhri Karray.Survey on speech emotion recognition ; features,classifi-cation schemes, and databases [ J ]. Pattern Recognition,2011, 44(3) : 572-587.
  • 3Lanckriet Gert R G,Cristianini Nello,Bartlett Peter, etal. Learning the kernel matrix with semi-definite program-ming [ J ]. Machine Learning Research,2004,5(1):27-72.
  • 4Yeh ChiYuan, Su WenPin, Lee Shiejue. An efficientmultiple-kernel learning for pattern classification [ J ]. Ex-pert Systems with Applications, 2013, 40 (9): 3491 -3499.
  • 5Meyer Patrick E, Bontempi Gianluca. On the use of vari-able complementarity for feature selection in cancer clas-sification [ C ] // Applications of Evolutionary Computing-EvoWorkshops 2006 Proceedings. Budapest: SpringerVerlag, 2006: 91-102.
  • 6Wu Siqing, Falk H Tiago, Chan WaiYip. Automaticspeech recognition using modulation spectral features[ J].Speech Communication, 2011 , 53(5) : 768-785.
  • 7Milton A, Tamil Selvi S. Class-specific multiple classifi-ers scheme to recognize emotions from speech signals [ J ].Computer Speech and Language, 2014, 28 (3): 717-742.
  • 8Hassan A, Damper R I. Classification of emotionalspeech using 3 DEC hierarchical classifier [ J ]. SpeechCommunication, 2012 , 54(7) : 903-916.
  • 9Jin Yun,Song Peng, Zheng Wenming, et al. Novel fea-ture fusion method for speech emotion recognition basedon multiple kernel learning [ J ]. Journal of Southeast Uni-versity, 2013, 29(2) : 129-133.

二级参考文献73

共引文献29

同被引文献41

引证文献7

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部