期刊文献+

CNN视觉特征的图像检索 被引量:21

Image Retrieval Based on CNN Visual Features
原文传递
导出
摘要 卷积神经网络(CNN)是当前图像识别领域的研究热点,利用预训练的CNN网络提取的图像特征展示出了较强的图像识别能力.主要对比分析了传统视觉特征和CNN视觉特征在基于内容图像检索任务中的性能表现,并指出了一些可以值得深入研究的方向.在两个公开数据库(Pascal Sentence和Pascal VOC 2007)的实验尝试表明CNN视觉特征比传统的视觉特征更适用于图像检索. Convolutional neural network (CNN) currently becomes research focus for image recognition. The visual features extracted from the pre-trained CNN demonstrate powerful ability for various recognition tasks. The performance of traditional visual features and CNN visual features for content-based image re- trieval was mainly compared. Experiments on the two public available datasets of Pascal Sentence and Pascal VOC 2007 show that, a sufficient performance of CNN visual features used in image retrieval when compared with traditional visual features.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第B06期103-106,120,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61370128)
关键词 卷积神经网络 基于内容的图像检索 特征提取 深度学习 convolutional neural network content-based image retrieval feature extraction deep learn- ing
  • 相关文献

参考文献14

  • 1Edkins J, Graham M. Content-based image retrieval[R]. University of Northumbria at Newcastle: TechnicalReport, 1999.
  • 2Oliva A, Antonio T. Modeling the shape of the scene: aholistic representation of the spatial envelope [ J ]. Inter-national Journal of Computer Vision, 2001,42 ( 3 ):145-175.
  • 3Lowe D G. Distinctive image features from scale-invariantkeypoints [ J]. International Journal of Computer Vision,2004, 60(2) : 91-110.
  • 4Dalai N , Bill T. Histograms of oriented gradients for hu-man detection [ C] // CVPR. San Diego,USA: IEEE,2005: 886-893.
  • 5Datta R,Joshi D. Image retrieval: ideas, influences,and trends of the new age [J]. ACM Computing Surveys(CSUR),2008,40(2) : 5.
  • 6Hinton G E, Ruslan R S. Reducing the dimensionality ofdata with neural networks [J]. Science, 2006, 313(5786) : 504-507.
  • 7Cun L, Boser B. Handwritten digit recognition with aback-propagation network [C]// Advances in Neural In-formation Processing Systems. Denver, Colorado, USA:MIT, 1990: 396-404.
  • 8Alex K, Ilya S. Imagenet classification with deep convo-lutional neural networks [ C] H Advances in Neural Infor-mation Processing Systems. Lake Tahoe, Nevada, USA:MIT, 2012: 1097-1105.
  • 9Deng Jia,Dong Wei. Imagenet: a large-scale hierarchi-cal image database [ C ] CVPR. Miami, USA: IEEE,2009: 248-255.
  • 10Ali S R, Hossein A, Josephine S, et al. Cnn featuresoff-the-shelf : an astounding baseline for recognition [ C ]//CVPRW. Columbus, USA: IEEE, 2014: 512-519.

同被引文献91

引证文献21

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部