期刊文献+

无穷维赋范线性空间上的填球问题(英文)

A Packing Problem on Infinite-dimensional Normed Linear Spaces
原文传递
导出
摘要 受Riesz引理及一个有趣问题"无穷维赋范线性空间上的闭单位球是否可以由有限个开单位球覆盖"的启发,本文得到一个有用的结果,利用这个结果可以给出Kottman定理的一个简单证明及填球数的上界估计.并藉由上界估计考虑了L^p(Ω空间上的填球问题. Motivated by Riesz Lemma and an interesting question, whether a closed unit ball in an infinite-dimensional normed linear space can be covered by finitely many open unit balls, we obtain a useful result which leads to a novel proof of Kottman Theorem and an upper estimate for infinitely-packing numbers. The latter application also stimulates us to propose a packing problem which we consider in the space Lp (Ω).
出处 《数学进展》 CSCD 北大核心 2015年第4期492-504,共13页 Advances in Mathematics(China)
基金 Supported in part by NSFC(No.11471039,No.11271162)
关键词 无穷维赋范线性空间 分离问题 填球问题 Riesz引理 infinite-dimensional normed linear space separated problem packing problem Riesz Lemma
  • 相关文献

参考文献7

  • 1Burlak, J.A.C., Rankin, R.A. and Robertson, A.P., The packing of spheres in the space gv, Proc. Glasgow Math. Assoc., 1958, 4(1): 22-25.
  • 2Diestel, J., Sequences and Series in Banach Spaces, New York: Springer-Verlag, 1984.
  • 3Elton, J. and Odell, E., The unit ball of every infinite dimensional normed linear space contains a (1 q- e)- separated sequence, Colloq. Math., 1981, 44(1): 105-109.
  • 4Kottman, C.A., Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc., 1970, 150(2): 565-576.
  • 5Kottman, C.A., Subsets of the unit ball that are separated by more than one, Studia Math., 1975, 53(1): 15-27.
  • 6Rankin, R.A., On sums of powers of linear forms I, Ann. of Math., 1949, 50(2): 691-698.
  • 7Rankin, R.A., On sums of powers of linear forms II, Ann. of Math., 1949, 50(2): 699-704.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部