期刊文献+

基于多GPU并行框架的DNN语音识别研究 被引量:1

Speech Recognition Research on Multi-GPU Parallel Framework of Deep Neural Network
下载PDF
导出
摘要 提出了深度神经网络DNN的多GPU并行框架,描述了其实现方法及其性能优化,依托多GPU的强大协同并行计算能力,结合数据并行特点,实现快速高效的深度神经网络训练.对语音识别应用,在模型收敛速度和模型性能上都取得了有效提升——相比单GPU有4.6倍加速比,数十亿样本的训练数天收敛,字错率降低约10%. A Muhi-GPU parallel framework o{ DNN is given out, and the implementation method and its performance optimization are presented, relying on the powerful synergy parallel computing ability of Muhi-GPU, combining with the characteristics of data parallel, the fast and efficient training of Deep Neural Network is realized. The application of speech recognition, the model convergence rate and model performance have achieved effective promotion. Compared with single GPU, it has 4. 6 times speedup ratio, billions of training days convergence, and word error rate is reduced about 10%.
作者 杨宁
出处 《微电子学与计算机》 CSCD 北大核心 2015年第7期6-10,共5页 Microelectronics & Computer
基金 国家自然科学基金青年基金项目(61202136)
关键词 深度神经网络 语音识别 图形处理器 并行框架 deep neural network speech recognition graphic processing unit parallel framework
  • 相关文献

参考文献6

  • 1Kai-Fu Lee~ Automatic speech recognition: the develop- ment of the sphinx recognition system [ M~. Norwell, MA, USA:Kluwer Academic Publishers, 1988.
  • 2Frank Seide, Gang Li, Dong Yu. Conversational speech transcription using context-dependent deep neural net- works[C]//Appearing in Proceedings of the 29~ Interna- tional Conference on Machine Learmng. Edinburgh, Scot- land, UK, 2012.. 437-440.
  • 3Dahl G E, Dong Yu, Li Deng, et al. Context depend- ent pretrained deep neural networks {or large vocabu- lary speech recognition[J]. IEEE Transactions on Au- dio Speech and Language Processing, 2012, 20 ( 1 ) ~ 30-42.
  • 4Li Deng, Hinton G, Kingsbury 13. New types of deep neural network learning for speech recognition and re- lated applications: an overview [C] /// Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. Italy, Florence, 2013: 8599-8603.
  • 5Hinton G, Li Deng, Dong Yu, et al. Deep neural net- works for acoustic modeling in speech recognition: the shared views of four research groups[J]. Signal Pro- cessing Magazine, 2012,29(6) ~ 82-97.
  • 6Le Q V. Building high-level features using large scale unsupervised learning [ C] // Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. Italy, Florence, 2013 ~ 8595-8598.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部