期刊文献+

一种基于压缩感知的多重测量去噪算法 被引量:1

A Multi-measurement De-noising Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 针对在图像处理过程中需要对海量数据进行处理的问题,提出了一种基于压缩感知的多重测量去噪算法,并通过仿真实验验证了该去噪算法的有效性及可行性,同时也验证了该算法在保持良好的的去噪性能的同时,能大幅降低所需处理的数据量. To deal with large amounts of data in image processing, a Multi-measurement De-noising Algorithm based on Compressed Sensing is proposed, and the simulation results of experimental show that it can significantly reduce the amount of data to process, as well as its efficiency and feasibility of this method.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第7期42-45,共4页 Microelectronics & Computer
基金 国家科技重大专项子课题:水环境遥感监测业务应用平台设计与开发(2011ZX07527-006-Y)
关键词 采样频率 信号处理 压缩感知 多重测量 图像去噪 数据量 sampling frequency, signal processing, compressed sensing, multi-measurement, image de-nosing, amountof data
  • 相关文献

参考文献6

  • 1Donoho D L. Compressed sensing [J]. Information Theory, IEEE Transactions on, 2006, 52 ( 4 ) .. 1289-1306.
  • 2Malloy M L, Nowak R D. Near-optimal adaptive corn-pressed sensing[J]. Information Theory, IEE trans- actions on, 2014, 60(7) .-4001-4012.
  • 3Strohmer T. Measure what should be measured: pro- gress and challenges in compressive sensing[J] Signal Processing Letters, IEEE, 2012,19 (12) .. 887-893.
  • 4Needell D, Vershynin R. Signal recovery from incom- plete and inaccurate measurements via regularized or- thogonal matching pursuit[J]. IEEE Journal of Select- ed Topics in Signal Processing, 2010,4 (2) : 310-316.
  • 5Baraniuk R G, Volkan C, Marco T D. Model-based compressive sensing[J]. IEEE Transactions on Infor- mation Theory, 2010,56(4) .. 1982-2001.
  • 6Debatin M, Zygmanski P,Stsepankou D, et al. CT re- construction from few-views by anisotropic total vari- ation minimization[C]//Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Cali- fornia, Anaheim, 2012 .. 2295-2296.

同被引文献8

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部