期刊文献+

基于极限学习机的语音情感识别 被引量:3

Speech Emotion Recognition Based on Extreme Learning Machine
下载PDF
导出
摘要 提出基于ELM的广义神经网络语音情感识别模型,对基于ELM的单隐层前馈神经网络模型,采用多点交叉和多点变异遗传算法对模型参数进行优化;对基于核函数ELM的广义单隐层前馈神经网络,采用网格搜索寻找模型最优参数组合.对TYUT和EMO-DB情感语音库三种情感(高兴、生气和中性)的识别结果表明,所建立的基于ELM的语音情感识别模型,在泛化性能和训练速度上均优于SVM模型. In this paper, the generalized networks based on ELM are proposed as recognition models. According to the experimental analysis, in the single hidden layer feed-forward network based on ELM, the multi-point crossover and multi- mutation genetic algorithm is used to optimize the parameters of the model. In the generalized single hidden layer feed-forward network based on kernel function ELM, grid search is used to find the optimal parameter combination of the model. On the basic of recognition results of the three emotions called happiness, anger and which are drawn from the TYUT and EMO-DB emotional speech databases. The proposed speech emotion recognition models based on ELM are superior to SVM on both generalization performance and speed.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第7期50-54,58,共6页 Microelectronics & Computer
基金 国家自然科学基金(61371193) 山西省青年科技研究基金(2013021016-2) 山西省回国留学人员科研项目(2013-034)
关键词 语音情感识别 极限学习机ELM 核函数ELM 支持向量机 speech emotion recognition extreme learning machine kernel function extreme learning machine support vector machines
  • 相关文献

参考文献5

二级参考文献69

  • 1佟晓筠,崔明根.基于扰动的复合混沌序列密码的图像反馈加密算法[J].中国科学(F辑:信息科学),2009,39(6):588-597. 被引量:7
  • 2卢山,王海燕.多变量时间序列最大李雅普诺夫指数的计算[J].物理学报,2006,55(2):572-576. 被引量:22
  • 3何志国,何钦铭,陈奇,曹玉东.语音识别中结合进化计算与MDI的HMM训练方法[J].系统工程理论与实践,2006,26(7):54-58. 被引量:2
  • 4郭徽东,章新华,宋元,陆强强.多传感器异步数据融合算法[J].电子与信息学报,2006,28(9):1546-1549. 被引量:12
  • 5Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2): 251-257.
  • 6Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6) : 861-867.
  • 7Huang G-B, Babri H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 1998, 9(1): 224-229.
  • 8Huang G-B. Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Transactions on Neural Networks, 2003, 14(2): 274-281.
  • 9Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70 (1-3): 489-501.
  • 10Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer, 1995.

共引文献236

同被引文献24

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部