期刊文献+

基于对比权限模式的恶意软件检测方法 被引量:3

A Malware Detection Method Based on Contrasting Permission Patterns
下载PDF
导出
摘要 针对Android系统特有的权限管理机制,引入对比权限模式来表示恶意软件与正常软件的差异,进而提出一种组合分类器用于对Android恶意软件的自动检测.每一个对比权限模式被视为一个弱分类器,并为最终的结果投票.基于真实数据的实验表明,所提出的组合分类器在性能上优于传统的分类方法. Exploiting the specific permission mechanism of Android system, we introduce contrasting permission patterns to represent the essential differences between malwares and clean applications and present an ensemble classifier for automatically detecting Android malwares. Each contrasting permission pattern is regarded as a weak classifier and votes for the final decision. Experiments on real applications demonstrate that the proposed classifier outperforms commonly used classifiers in Android malware detection.
出处 《微电子学与计算机》 CSCD 北大核心 2015年第7期112-115,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(61304067) 国家社会科学基金项目(13CTJ003)
关键词 恶意软件 关联规则 组合分类器 权限模式 malware association rule ensemble classifier permission pattern
  • 相关文献

参考文献6

  • 1Bhas N. Press Release: More than 80G of smartpho- nes remain unprotected from malware and attacks, ju- niper research finds [EB/OL~. [2014-09-20]. http:// www. juniperresearch, com/viewpressrelease, php? pr :404.
  • 2Chen Y, Xu H, Zhou Y,et al. Is this app safe for chil- dren?: a comparison study of maturity ratings on an- droid and lOS applications F C] // Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro.. International World Wide Weh Confer- ences Steering Committee, 2013.- 201-212.
  • 3Felt A P, Greenwood K, Wagner D. The effectiveness of application permissionsFC~//Proceedings of the 2nd USENIX Conference on Web Application Develop- ment. Portland.. USENIX Association, 2011.. 7-7.
  • 4Zhou Y, Jiang X. Dissecting android malware: charac- terization and evolution[C]///Proceedings of the 2012 IEEE Symposium on Security and Privacy. San Fran- cisco: IEEE Computer Society, 2012 : 95-109.
  • 5Frank M, Dong B, Felt A P, et al. Mining permission request patterns from android and facebook applica- tions[C~//Proceedings of the 2012 IEEE 12th Interna- tional Conference on Data Mining. Brussels: IEEE Computer Society, 2012.. 870-875.
  • 6Pietraszek T, Tanner A. Data mining and machine learning-Towards reducing false positives in intrusion detection[J]. Information Security Technical Report, 2005,10(3) : 169-183.

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部