期刊文献+

Modified Kantorovich Operators Providing a Better Error Estimation 被引量:1

Modified Kantorovich Operators Providing a Better Error Estimation
下载PDF
导出
摘要 Abstract: The approximation operator for every kind of the objective function is different in approximation theory. For Lebesgue function, we introduce a kind of modified Kantorovich operators, which preserve the test functions 1 and x2. This type of modification enables better error estimation on the interval[+√3/3,+∞] than the classic ones. Finally, a Voronovskaya-type theoremfor these operators is also obtained.
作者 Qiulan Qi
出处 《Journal of Mathematics and System Science》 2015年第7期286-288,共3页 数学和系统科学(英文版)
关键词 Kantorovich operators modulus of continuity Voronovskaya-type theorem. Kantorovich算子 误差估计 勒贝格函数 逼近算子 目标函数 逼近理论 测试功能 ya型
  • 相关文献

参考文献10

  • 1O. Duman, M.A. Ozarslan and B.D. Vecchia, Modified Sz~isz-Mirakjan-Kantorovich operators preserving linear functions, Turk J. Math. (2009) 151-158.
  • 2J. P. King, Positive linear operators which preserve x2, Acta Math. Hungarica (2003) 203-208.
  • 3O. Agratini, Linear operators that preserve some test functions,Int. J. Math. Math. Sci. Art. ID 94136 (2006) 1-11.
  • 4O. Agratini, On the iterates of a class of summation-type linear positive operators, Comput. Math. Appl. (2008) 1178-1180.
  • 5H. Gonska, P. PiLul and 1. Rata, General King-type operators, Result. Math. (2009) 279-286.
  • 6N.I. Mahmudov, Korovskin-type theorems and applications, Cent. Eur. J. Math. (2009) 348-356.
  • 7L. Rempulska, K. Tomczak, Approximation by certain linear operators preserving x2, Turk. J. Math. (2009) 273-281.
  • 8V. Gupta, A. Noor, Convergence of derivatives for certain mixed Sz,Ssz-Beta operators, J. Math. Anal Appl. (2006) 1-9.
  • 9F. Tasdelen, R. Akta$, A.Altm, A Kantorovich type of S~asz operators including Brenke-type polynomials, Abstract and Applied Analysis (2012) Article ID 867203 doi: 10.1155/2012/867203.
  • 10R. Aktaq, B. (~ekim, F. Tasdelen, A Kantorovich-Stancu type generalization of S2asz operators including Brenke type polynomials, J. of Function Spaces and Applications (2013) Article ID 935430 doi: 10.1155/2013/935430.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部