期刊文献+

Bernstein算子对具有奇性函数的加权同时逼近 被引量:2

Weighted Simultaneous Approximation by Bernstein Operators for Functions with Singularities
原文传递
导出
摘要 利用在端点用Lagrange插值代替函数值的方法构造了一种新的Bernstein算子,这种新的算子可以用以逼近端点具有奇性的函数,并给出了它同时逼近的正定理. We construct a new type of Bernstein operators by using Lagrange interpolation to replace the values of f(x) at endpoints,which enable us to approximate the functions with singularities.The direct result of the weighted pointwise simultaneous approximation of the new operators is given.
作者 虞旦盛
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2015年第4期535-550,共16页 Acta Mathematica Sinica:Chinese Series
关键词 BERNSTEIN算子 加权同时逼近 奇性函数 正定理 Bernstein operators weighted pointwise approximation functions with singularities direct theorem
  • 相关文献

参考文献2

二级参考文献12

  • 1Biancamaria Della Vecchia,Giuseppe Mastroianni,József Szabados.Weighted approximation of functions with endpoint or inner singularities by Bernstein operators[J].Acta Mathematica Hungarica (-).2004(1-2)
  • 2Shunsheng Guo,Hongzhi Tong,Gengsheng Zhang.Pointwise weighted approximation by Bernstein operators[J].Acta Mathematica Hungarica.2003(4)
  • 3Lorentz,G.G.Bernstein Polynomials[]..1953
  • 4Mastroianni, G,Totik, V.Jackson type inequalities for doubling and Ap weights[].Rend Circ Mat Palermo (II).1998
  • 5Mastroianni, G,Totik, V.Jackson type inequalities for doubling and Ap weights II[].East J Approx.1999
  • 6Yu, D.S,Zhao, D.J.Approximation of function with singularities by truncated Bernstein operators[].Southeast Asian Bull Math.2006
  • 7Yu, D.S,Zhou, S.P.Global and pointwise estimate for ap-proximation by rational functions with polynomials of positive coefficients as the denominators[]..
  • 8Della Vecchia, B,Mastroianni, G,Szabodos, J.Weighted approximation of functions with endpoint or inner singularities by Bernstein operators[].Acta Mathematica Hungarica.2004
  • 9Ditzian, Z,Totik, V.Moduli of Smoothness[]..1987
  • 10Guo, S,Tong, H,Zhang, G.Pointwise weighted ap-proximation by Bernstein operators[].Acta Mathematica Hungarica.2003

共引文献8

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部