摘要
针对鞍点问题的预条件迭代求解方法,通过引入多参数使系数矩阵的分裂形式更加一般化,运用矩阵代数理论分析多参数形式下算法的收敛性。最后给出数值例子来检验多参数预条件算法的优势,并在数值上分析收敛速度与参数的变化趋势。
In preconditioned iterative solving method of the saddle point problems,the coefficient matrix was made to split more general form by introducing multi-parameter,then convergence of this algorithm was analyzed on the basis of the theory of matrix algebra. Finally a numerical example was given to verify the advantage of the multiple parameter algorithm,and the change trend of convergence rate and parameter on the numerical were discussed.
出处
《贵州大学学报(自然科学版)》
2015年第3期10-13,共4页
Journal of Guizhou University:Natural Sciences
基金
陕西省教育厅科学研究计划项目(14JK1052)
陕西省科学研究计划项目(2013JM1001)
关键词
鞍点问题
预条件方法
迭代法
收敛性
the saddle point problem
preconditioned method
iteration method
convergence