期刊文献+

基于DWT-DCT系数符号特征匹配的视频目标跟踪

Moving Object Tracking Via DWT-DCT Coefficient Symbol Feature Matching
下载PDF
导出
摘要 视频运动目标跟踪,简单说就是在下一帧图像中锁定感兴趣目标的确切位置。复杂的背景以及目标本身的变化给运动目标跟踪技术带来了很大的困难。现有算法大都在分辨率较高的条件下针对特定场景取得较好的跟踪效果,但针对运动目标尺寸比较小且分辨率较低的目标跟踪算法的研究报道不多,这种情况下通常难以达到精确的跟踪,鲁棒性也比较差。针对这一问题,探讨了一种基于DWT-DCT系数符号特征的运动目标跟踪算法,该算法通过提取这一特征进行特征匹配来定位目标的位置。实验结果表明,该算法不仅具有较强的鲁棒性,而且在低分辨条件下仍能对尺度较小的目标进行精确的跟踪。 Moving object tracking in video is to locate the exact position of an interested object in the next frame image. The complex background and uncertainty of object itself will bring great challenge to object tracking technology. Most of the existing algorithms,which obtained satisfactory results in certain typical application conditions,are based on the conditions of the relatively high resolution on a typical application scene. However,research work for small size object tracking in low-resolution video is relatively less,and it is difficult to achieve accurate tracking if the general algorithms are applied to this situation. Therefore,research of efficient algorithms for object tracking in low resolution video is a more challenging work. In this manuscript,an algorithm of this type was proposed by using DWT-DCT coefficient symbolic features as matching feature. Experiments were provided to demonstrate the feasibility of the proposed algorithm for object tracking in low resolution video.
出处 《贵州大学学报(自然科学版)》 2015年第3期103-108,共6页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金资助项目(60862003) 科技部国际合作项目(2009DFRl0530) 教育部高等学校博士点基金资助项目(20095201110002) 贵州大学创新基金项目(硕理工2014001)
关键词 目标跟踪 DWT-DCT系数符号特征 低分辨率视频 object tracking DWT-DCT coefficient symbol features low-resolution video
  • 相关文献

参考文献9

  • 1Lee J W, Kim M S, Kweon I S. A Kalman filter based visual tracking algorithm for an object moving in 3 D [ C ]//IntelligentRobots and System. Pennsylvania :IEEE /RSJ International Confer- ence, 1995, L: 342-347.
  • 2Khan Z, Balch T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets[ J]. Pattern Anal- ysis and Machine Intelligence, IEEE Transactions on, 2005, 27 (11) : 1805 -1819.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. Pattern Analysis and Machine Intelligence, 1EEE Transac- tions on, 2003, 25(5) : 564 -577.
  • 4Lowe D G. Object recognition from local scale - invariant features [ Cl//Computcr vision. Kerkyra:The proceedings of the 7th IEEE international cmfference , 1999, 2 : 1150 - 1157.
  • 5Lowe D G. Distinctive image features from scale-invariant key- points [ J ]. International journal of computer vision, 2004, 60 (2): 91-110.
  • 6Feng, Bin, Bing Zeng, Jinbo Qiu. Tracking object by combining particle filters and SIb~F features [ C]//Image and Graphics. Xi" an: The proceedings of the 5th IEEE International Conference, 2009:527 - 532.
  • 7Chen A, Zhu M, Wang Y, et al. Mean shift tracking combining SIFT[ C]//Signal Processing. BeiJing:The proceedings of the 9th International Conference, 2008,3 : 1532 - 1535.
  • 8Cheng - Bo Y, Jing Z, Yu - xuan L, et al. Object tracking in the complex environment based on SIFT[ C ]//Communication Soft- ware and Networks ( 1CCSN ). Xi "an : The proceedings of the 3rd IEEE International Conference ,2011 : 150 - 153.
  • 9李京兵,黄席樾.一种基于DWT抗几何攻击数字水印鲁棒算法[J].计算机仿真,2007,24(3):303-306. 被引量:20

二级参考文献9

  • 1C I Podilchuk,E J Delp.Digital watermarking algorithms and applications[J].IEEE Signal Processing Magazine,2001,18(4):33-46.
  • 2I J Cox,M L Miller.The first 50 years of electronic watermarking[J].Journal of Applied Signal Processing,2002,(2):126-132.
  • 3F A P Petitcolas,R J Anderson,M G Kuhn.Attacks on copyright marking system[C].In Proc.2nd Int.Workshop Information Hiding,Portland,OR,Apr.14-17,1998.218-238.
  • 4J J K O'Ruanaidh,T Pun.Rotation scale and translation invariant spread spectrum digital image watermarking[J].Signal Processing,1998,66(3):303-317.
  • 5X G Kang,et al..A DWT-DFT Composite watermarking scheme robust to both affine and JPEG compression[J].IEEE Trans.on Circuits and Systems for Video Technology,2003,13(8):776-786.
  • 6V Solachidis,I Pitas.Circularly symmetric watermark embedding in 2-D DFT domain[J].IEEE Transactions on Image Processing,2001,10(11):1741-1753.
  • 7S Voloshynovskiy,F Deguillaume,T Pun.Multibit watermarking robust against local nonlinear geometrical distortions[C].In:Proceedings of International Conference on Image Processing 2001,Thessaloniki,Greece,2001.999-1002.
  • 8M Kutter,S K Bhattacharjee,T Ebrhimi.Towards second generation watermarking schemes[C].ICIP'99,Kobe,Japan,October 25-28,1999,3:320-323.
  • 9P Jeng-Shyang,H Hsiang-cheh,W Feng.A VQ-Based Multi-Watermarking Algorithm[C].In:Proceedings of IEEE TENCON,2002.117~120.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部