摘要
A novel hybrid material, Cu-PAA/MWCNTs (copper nanoparticles deposited multiwalled carbon nano- tubes with poly (acrylic acid) as dispersant, was prepared and expected to obtain a more effective and well-dispersed disinfection material for water treatment. X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), the X-ray fluorescence (XRF), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), Raman spectroscopy, and thermal gravi- metric analyzer (TGA) were used to characterize the Cu- PAA/MWCNTs. Escherichia coli (E. coil) was employed as the target bacteria. The cell viability determination and fluorescence imaging results demonstrated that Cu-PAA/ MWCNTs possessed strong antimicrobial ability on E. coil. The deposited Cu was suggested to play an important role in the antimicrobial action of Cu-PAA/MWCNTs.
A novel hybrid material, Cu-PAA/MWCNTs (copper nanoparticles deposited multiwalled carbon nano- tubes with poly (acrylic acid) as dispersant, was prepared and expected to obtain a more effective and well-dispersed disinfection material for water treatment. X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), the X-ray fluorescence (XRF), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), Raman spectroscopy, and thermal gravi- metric analyzer (TGA) were used to characterize the Cu- PAA/MWCNTs. Escherichia coli (E. coil) was employed as the target bacteria. The cell viability determination and fluorescence imaging results demonstrated that Cu-PAA/ MWCNTs possessed strong antimicrobial ability on E. coil. The deposited Cu was suggested to play an important role in the antimicrobial action of Cu-PAA/MWCNTs.