期刊文献+

MAC算法计算二维方腔顶盖流动 被引量:3

Calculation of Two-dimensional Cavity Flow Based on MAC
下载PDF
导出
摘要 二维方腔流动是不可压缩黏性的典型流动,可以用来检验各种数值算法计算精度和可靠性,目前尚不能求得它的解析解.基于Matlab编程,采用交错网格MAC算法求解二维方腔流动,计算采用控制容积积分法离散控制方程,对流项和扩散项采用中心差分格式,得到流动达到稳定状态时各物理量的分布. Two-dimensional square cavity flow is a typical incompressible viscous flow, which can be used to test a vari-ety of numerical algorithms for computational accuracy and reliability, yet its analytical solution still cannot be achieved.Based on Matlab programming, the staggered grid MAC algorithm was used to solve two-dimensional square cavity flow.Control volume integral method was used to discrete the control equations for calculation. Central difference scheme wasapplied for convection and diffusion terms. In the end, the flow simulation results of each physical quantity distribution insteady state were obtained.
出处 《宜宾学院学报》 2015年第6期28-31,共4页 Journal of Yibin University
关键词 数值模拟 方腔流动 控制容积积分法 MAC算法 离散 numerical simulation cavity flow control volume method MAC discrete
  • 相关文献

参考文献8

  • 1Peng Y F,Shiau Y H,Hwang R R.Transtion in a 2-D lid-drivencavity flow[J].Computer&Fluids,2003,32(3):337-352.
  • 2陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社,2010.
  • 3Abdallah S.Numerical solutions for the pressure poisson equationwith neumann boundary conditions using a non-staggered grid[J].Journal of computational physics,1987,70(1):182-192.
  • 4Hortmann M,PeriM,Scheuerer G.Finite volume multigrid predic-tion of laminar natural convection:Bench-mark solutions[J].Inter-national Journal for Numerical Methods in Fluids,1990,11(2):189-207.
  • 5DemirdiI,PeriM.Finite volume method for prediction of fluidflow in arbitrarily shaped domains with moving boundaries[J].Inter-national Journal for Numerical Methods in Fluids,1990,10(7):771-790.
  • 6Brandt A.Multi-level adaptive technique(MLAT)for fast numeri-cal solution to boundary value problems[C].Proceedings of theThird International Conference on Numerical Methods in Fluid Me-chanics,Springer Berlin/Heidelberg,1973:82-89.
  • 7Wang J,Li J F,Cheng W X,et al.Comparison of finite differenceand finite volume method for numerical simulation of the incom-pressible viscous driven cavity flow[J].Advanced Materials Re-search,2013(732-733):413-416.
  • 8Li J F,Long J,Yuan L A,et al.Comparison of finite difference andfinite volume method for numerical simulation of driven cavity flowbased on MAC[C].Computational and Information Sciences(IC-CIS),2013 Fifth International Conference on,Shiyang,2013:891-894.

同被引文献17

  • 1PENG Y F. SHIAU Y H, HWANG R R. Transition in a 2-D lid- driven cavity flow[J]. Compuler & Fluids, 2003, 32(3): 337-352.
  • 2LIU C H. LEUNC, D Y C. Development of a finite element solution for the unsteady Navier-Stokes equations using projection method and fractional 0-scheme[J]. Computer methods in applied mechan- ics and engineering. 2001, 190(32-33): 4301-4317.
  • 3AYD1N M. FENNER R T. Boundary element analysis of driven cav-ity flow for low and moderate Reynolds numbers[J]. lnt J Nt, mer Meth Fluids, 2001, 37(1): 45-64.
  • 4BRUNEAU C H, SAAD M. The 2D lid-driven cavity problem revis- ited[J]. Computers & Fluids 2006, 35(3): 326-348.
  • 5MERCAN H, ATALIK K. Vortex formation in lid-driven arc-shape cavity flows at high Reynohts numbers[J]. European Journal of Me- chanics B/Fluids, 2009, 28(1): 61-71.
  • 6WANG J, LI J F, CHENG W X, et al. Comparison of Finite Difference and Finite Volume Method for Numerical Simulation of the Incom- pressible Viscous Driven Cavity Flow[J]. Advanced Materials Re- search, 2013. doi:10.4028/www.scientific.net/AMR.732-733.413.
  • 7Liu CH,Leung DYC.Development of a finite element solution for the unsteady Navier-Stokes equations using projection method and fractionalθ-format[J].Computer methods in applied mechanics and engineering,2001(19):4301-4317.
  • 8M.Aydinl and R.T.Fenner.Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers[J].Int.J.Numer.Meth.Fluids,2001,37(1):45-64.
  • 9Wang Jian,Li Jiangfei,Cheng Wenxue,et al.Comparison of Finite Difference and Finite Volume Method for Numerical Simulation of the Incompressible Viscous Driven Cavity Flow[J].Advanced Materials Research,2013(3):413-416.
  • 10Brandt A.Multi-level adaptive technique(MLAT)for fast numerical solution to boundary value problems.Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics[J].Springer Berlin/Heidelberg,1973,18(1):82-89.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部