期刊文献+

利用随机扰动特性的集合覆盖蚁群算法识别tag SNPs 被引量:1

A Collection of Random-Perturbation Characteristics Covered Ant Colony Algorithm to Identify tag SNPs
下载PDF
导出
摘要 序列中的标签SNPs-tag SNPs携带了SNPs数据集的绝大部分遗传信息,因此寻找tag SNPs意义重大.但从SNPs数据集中找出tag SNPs需要耗费巨大的计算量,传统的方法效率低且费用昂贵,对于复杂的集合覆盖问题,现有算法难以得到优化解.鉴于蚁群算法有较强的近优解搜索能力,提出具有随机扰动特性的集合覆盖蚁群算法(RCACO)用于tag SNPs搜索.模拟数据集上进行的算法实验结果表明,与近两年的PSO、GA两类算法相比,所提出的算法运行时间较短,搜索结果精确度更高. Tag SNPs carries most of the genetic information of SNPs data set, which makes it significant to search tagSNPs. However, identifying tag SNPs from SNPs data set costs a huge amount of computation so that traditional methodsare inefficient and expensive, and it turns difficult to obtain optimal solutions in case of complicated set cover problems.Since ant colony algorithms(ACO) work well in searching near-optimal solution, a new algorithm is proposed in searchingtag SNPs, which combine setcovering with ACO based on random-perturbation(RCACO). Experimental results on simu-lated data sets show that the proposed algorithms achieve higher accuracy with less time consumption than PSO and GAalgorithms adopted in recent years.
出处 《宜宾学院学报》 2015年第6期81-85,共5页 Journal of Yibin University
关键词 TAG SNPS 集合覆盖 蚁群算法 随机扰动 tag SNPs set cover ant colony algorithm random-perturbation
  • 相关文献

参考文献10

  • 1Klein RJ,Zeiss C,Chew EY,et al.Complement factor H polymor-phism in age-related macular generation[J].Science,2005,308(5720):385-389.
  • 2Carlson C,Eberle M A.Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using link-age disequilibrium[J].Am J Hum Genet,2004,74(1):106-120.
  • 3Phuong T M,Lin Z,Altman R B.Choosing SNPs using feature se-lection[C].Proc IEEE Comput Syst Bioinform Conf,2005:301-309.
  • 4Liu H,Motoda H.Feature selection for knowledge discovery and da-ta mining[M].Boston:Kluwer Acdcemic Publishers,1998.
  • 5Weale M.Selection and evaluation of tagging SNPs in the neuronal-sodium-channel gene SCN1A:implications for linkage-disequilib-rium gene mapping[J].Am J Hum Genet,2003,73(3):551-565.
  • 6Stram D O,Leigh P C,Bretsky P,et al.Modeling and E-M estima-tion of haplotype specific relative risks from genotype data for acasecontrol study of unrelated individuals[J].Hum Heredity,2003,55(4):179-190.
  • 7Youshikawa M,Amagasa T.Xrel:A path-based approach to stor-age and retrieval of XML documents using relational database[J].ACM Trans Internet Technology,2001.1(1):110-141.
  • 8Wen L,Zhang R,Lu X L.The design of efficient XML documentmodel[C].Proceedings of the First International Conference on Ma-chine Leaming and Cybemetis,Beijing,2002:1102-1106.
  • 9Dorigo M,Maniezzo V,Colorni A.Positive Feedback as a SearchStrategy[M].Technical Report 91-016,Dip.Elettronica,Politeeni-co di Milano,1991.
  • 10Dorigo M.Optimization,Learning,and Natural Algorithms(in Ital-ian)[D].Dip Elettronica,Politecnoco di Milano,1992.

同被引文献35

引证文献1

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部