期刊文献+

一个新的三维类Lorenz系统的动力学分析及仿真

Dynamics analysis of a new three-dimensional Lorenz-like system
下载PDF
导出
摘要 研究了一个新的三维自治类Lorenz系统,利用非线性动力学的相关理论分析了系统平衡点的稳定性以及Hopf分支,得到了系统发生Hopf分支时参数应满足的临界条件.通过数值仿真,分析了在多组参数下系统的各类动力学行为,进一步验证了理论推导的正确性. A three -dimensional continuous autonomous chaotic system is presented, which is similar to the Lorenz system. The non - linear dynamical method is used to study the dynamical behaviors of the Lorenz - like system, and some basic dynamical properties of the system are studied by means of theoretical analysis, numerical simulation, Lyapunov exponent, bifurcation diagrams, phase diagram, Poincare mapping; the complex dynamical behaviors of the chaotic system are analyzed with different system parameters, and the results show that the chaotic system has abundant dynamical behaviors.
出处 《云南民族大学学报(自然科学版)》 CAS 2015年第4期310-314,共5页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 甘肃省自然科学基金(1208RJZA111) 甘肃省国际科技合作计划项目(1104WCGA195)
关键词 LORENZ系统 混沌 LYAPUNOV指数 HOPF分岔 POINCARE截面 Lorenz system Lyapunov exponent Hopf bifurcation Poincare map
  • 相关文献

参考文献15

  • 1LORENZ E N. Deterministic non -perodic flow[ J ] J At- mosSci,1963(20):130 -141.
  • 2CHEN G R, UETA T. Yet another chaotic attractor [ J] International Journal of Bifurcation and Chaos. 1999,9(7) :1465 - 1466.
  • 3LU J, CHEN G. A new chaotic attractor coined[ J ]. In- ternational Journal of Bifurcation and Chaos, 2002, 12 (3) :659 -661.
  • 4OSELEDEC V I. A muhiplicative ergotic theorem: Lya- punov characteristic numbers for dynamical systems [ J ]. TransMoscow Math Soc, 1968(19) :197 -231.
  • 5ECKMANN J P, RUELLE D. Ergodic theory of chaos and strange attractors [ J ]. Rev Mod Phys, 1985 ( 57 ) : 617 - 656.
  • 6WOLF A, SWIFT J, SWINNEY H, et al. Determining Lyapunov exponents from a time series [ J ]. Physica D, 1985,16(3) :285 -317.
  • 7OIWA NN, FIEDLER - FERRARA N. A fast algorithm for estimation Lyapunov exponents from time series[J]. Phys- ics Letters A, 1998(246) :117 -121.
  • 8BLAZEJCZYK - OKOLEWSKA B, KAPITANIAK T. Co - existing at - tractors of impact oscillator[ J ]. Chaos, Soli- tons and Fractals, 1998, 9(8):1439 -1443.
  • 9UDWADIA F E, yon BREMEN H F. An efficient stable approach for computaton Lyapunov characteristic exponents of continuous dynamics systems[J]. Appl Math and Com- putation, 2001( 121 ) :219 - 259.
  • 10SILVIO L T, de SOUZA I L. Caldas calculation of Lya- punov exponents in systemswith impact[J]. Chaos, So/i- tons and Fractals, 2004(19) :569 -579.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部