期刊文献+

基于GARCH-EVT模型的证券投资基金动态风险测度 被引量:1

Dynamic risk measure of securities investment fund via GARCH-EVT model
下载PDF
导出
摘要 文章考虑了一类极值风险特征更为明显的金融资产,以股票基金、混合基金和债券基金为研究对象,比较研究了RiskMetrics、GARCH和GARCH-EVT 3类模型在动态极端风险测度上的表现,分别采用似然比检验和Bootstrap方法对3类模型给出的VaR和ES动态风险测度效果进行了返回测试。实证研究表明:基于GARCH-EVT模型给出的各类基金动态VaR和ES风险测度结果更为准确,意味着将GARCH模型与极值理论相结合,能够实现极端风险的准确测度;ES风险测度比VaR风险测度更保守,在测度极端风险时,应采用ES风险测度作为VaR风险测度的补充。 Considering a class of financial assets which have more obvious extreme risk characteristics, and tak- ing equity fund, hybrid fund and bond fund as research subjects, the performance of dynamic extreme risk measure estimated by RiskMetrics model, GARCH model and GARCH-EVT model are comparatively stud- ied, and the likelihood ratio test and Bootstrap method are used to backtest dynamic VaR risk measure and ES risk measure estimated by three models respectively. The empirical results show that the results of dynamic VaR risk measure and ES risk measure of each fund estimated by GARCH-EVT model are more accurate, which implies that extreme risk may be measured through the integration of GARCH model and extreme value theory; ES risk measure is more conservative than VaR risk measure and should be used as a supplement to VaR risk measure when measuring the extreme risk.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第7期997-1003,共7页 Journal of Hefei University of Technology:Natural Science
基金 合肥工业大学产业转移与创新发展研究中心招标资助项目(SK2014A073)
关键词 证券投资基金 GARCH-EVT模型 VaR风险测度 ES风险测度 返回测试 securities investment fund GARCH-EVT model value at risk(VaR) risk measure expectedshortfall(ES) risk measure backtest
  • 相关文献

参考文献14

  • 1伍笑萍,李忠民.基于GARCH模型的WTI原油现货市场的风险分析[J].合肥工业大学学报(自然科学版),2013,36(9):1127-1131. 被引量:5
  • 2李超杰,江红莉.基于动态Copula的社保基金投资风险测度[J].统计与决策,2011,27(23):147-150. 被引量:2
  • 3Artzner P,Delbaen F, Eber J M, et al. Coherent measures of risk [J]. Mathematical Finance, 1999, 9(3): 203-228.
  • 4刘沛欣,田军,周勇.基于VaR和ES调整的Sharpe比率及在基金评价中的实证研究[J].数理统计与管理,2012,31(4):735-750. 被引量:12
  • 5McNeil A J, Frey R. Estimation of tail-related risk meas- ures for heteroseedastic financial time series: an extremevalue approach [J]. Journal of Empirical Finance, 2000, 7 (3), 271-300.
  • 6Singh A K, Allen D E, Robert P J. Extreme market risk and extreme value theory [J]. Mathematics and Computers in Simulation, 2018,94; 310-328.
  • 7Morgan J P. Introduction to RiskMetries[R]. New Yorkl JP Morgan, 1994.
  • 8Bollerslev T. Generalized autoregressive conditional het- eroskedastieity [J]. Journal of Econometrics, 1986, 31 (3): 307-327.
  • 9Piekands III J. Statistical inference using extreme order sta- tistics[J]. The Annals of Statistics, 1975,3 ( 1 ), 119-131.
  • 10Smith R L. Estimating tails of probability distributions [J]. The Annals of Statistics, 1987,15 (3) .. 1174- 1207.

二级参考文献41

共引文献28

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部