期刊文献+

P掺杂4H-SiC超晶胞的第一性原理计算 被引量:5

First-principles calculations of P doped 4H-SiC supercell
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算本征以及P替位式掺杂,P间隙式掺杂4H-SiC的晶格常数、能带结构、态密度、载流子浓度和电导率。结果表明:P掺杂减小了4H-SiC的禁带宽度,其中P替位C原子掺杂的禁带宽度最小。替位式掺杂导致4H-SiC的费米能级进入导带,使其成为n型半导体,间隙式掺杂使4H-SiC的费米能级接近导带并在其禁带中引入杂质能级。替位式掺杂后,4H-SiC的自由电子主要存在于导带底,而间隙式掺杂4H-SiC中除了导带底外,禁带中的杂质能级也提供了自由电子,因此,电子浓度大幅度增加。掺杂4H-SiC的载流子迁移率主要由中性杂质对电子的散射决定,较本征态的大幅度降低。通过计算4种体系的电导率可知,P替位Si原子掺杂4H-SiC的电导率最大,导电性最好。 The lattice parameters, band structures, density of states, carrier concentrations and electrical conductivities of pure 4H-SiC, P substitutional doped, and P interstitial doped 4H-SiC were calculated using the plan-wave ultra-soft pseudo-potential method based on the density functional theory. The results indicate that the P doping decreases the forbidden band widths of 4H-SiC, and the P substituted for C doped 4H-SiC shows the narrowest band gap. Substitutional doping makes the Fermi energy level introduces into the conduction band of 4H-SiC, and the 4H-SiC becomes an n-type semiconductor. Interstitial doping makes the Fermi energy level near the conduction band of 4H-SiC and introduces impurity energy levels into the forbidden band. The electrons of substitutional doped 4H-SiC mainly exist at the bottom of the conduction band. While the impurity energy levels in the forbidden band also provides electrons except those existing at the bottom of the conduction band of interstitial doped 4H-SiC, so, the electron concentration increases significantly. The carrier mobility of the doped 4H-SiC is mainly depending on the neutral impurity scattering and decreases significantly comparing to the intrinsic state. Through the calculations of the electrical conductivities of the four systems, it is found that the electrical conductivity of 4H-SiC with P substituted for Si is the biggest, and the 4H-SiC shows the best conductivity.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2015年第6期1617-1624,共8页 The Chinese Journal of Nonferrous Metals
基金 国家留学基金资助项目([2014]3012) 国家级大学生创新训练资助项目(201410075002)
关键词 4H-SIC P掺杂 第一性原理 电导率 4H-SiC P doping first-principles electrical conductivity
  • 相关文献

参考文献18

  • 1王得印,宋永才,李永强.Effect of composition and structure on specific resistivity of SiC fibers[J].Transactions of Nonferrous Metals Society of China,2012,22(5):1133-1139. 被引量:1
  • 2HIGURASHI E, OKUMURA K, NAKASUJI K, SUGA T. Surface activated bonding of GaAs and SiC wafers at room temperature for improved heat dissipation in high-power semiconductor lasers[J]. Japanese Joumal of Applied Physics, 2015, 54(3): 030207.
  • 3GILARDI G, YAO W M, RABBANI HAGHIGHI H, LEIJTENS X J M, SMIT M K. Deep trenches for thermal crosstalk reduction in InP-based photonic integrated circuits[J]. Journal of Lightwave Technology, 2014, 32(24): 4262-4268.
  • 4KHEMKA V, CHOW T P, GUTMANN R J. Voltage Handling Capability and Microwave Performance of a 4H-SiC MESFET-A Simulation Study[J]. Materials Science Forum, 1997, 264: 961-964.
  • 5WU J, LI M, JIANG Y, LI J J, ZHANG Y, GAO H, LI X B, DU J F, ZOU X H, FAN X Q, GAN L, PENG C, LU Y, LEI J R. Performance of a 4H-SiC Schottky diode as a compact sized detector for neutron pulse form measurements[J]. Nuclear Instruments and Methods in Physics Research Section A, 2015, 771: 17-20.
  • 6盛柏桢,程文芳.碳化硅器件及其应用[J].电子元器件应用,2001,3(5):19-23. 被引量:5
  • 7WU J, FURSIN L, LI Y, ALEXANDROV P, ZHAO J H. A4308V, 20.9 m.cm2 4H-SiC MPS diodes based on a 30 rn drit layer[J]. Materials Science Forum, 2004, 457/460: 1109-1112.
  • 8张波,邓小川,张有润,李肇基.宽禁带半导体SiC功率器件发展现状及展望[J].中国电子科学研究院学报,2009,4(2):111-118. 被引量:66
  • 9ZHANG Jian-hui, LI Xue-qing, ALEXANDROV P, BURKE 1", ZHAO J H. Implantation-free 4H-SiC bipolar junction transistors with double base epilayers[J]. IEEE Electron Device Letters, 2008, 29(5): 471-473.
  • 10MIYAKE H, KIMOTO T, SUDA J. 4H-SiC BJTs with record current gains of 257 on (0001) and 335 on (000]-)[J]. IEEE Electron Device Letters, 2011, 32(7): 841-843.

二级参考文献28

  • 1吴孔平,顾书林,朱顺明.Ga和Mn共掺ZnO薄膜的结构和光学特性[J].半导体技术,2008,33(S1):345-348. 被引量:1
  • 2毛仙鹤,宋永才,李伟,杨大祥.聚碳硅烷纤维在环己烯气氛中的不熔化处理[J].材料研究学报,2007,21(2):177-182. 被引量:7
  • 3田爱华,赵彤,潘宏菽,陈昊,李亮,霍玉柱.n型4H-SiC同质外延层上欧姆接触的研究[J].半导体技术,2007,32(10):867-870. 被引量:3
  • 4Wang R Z, Wang B, Wang H, Zhou H, Huang A P, Zhu M K, Yan H, Yan X H 2002 Appl. Phys. Lett. 81 2782.
  • 5Rihon N 1978 Surf.. Sci. 70 92.
  • 6Cheung J T, Williams G M, Warren L E Zhuang Z M 2003 U. S. Patent 6 541 908 [2003-04-01].
  • 7Xu C X, Suna X W 2003 Appl. Phys. Lett. 83 3806.
  • 8Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H, Lee H J 2002 Appl. Phys.Len. 81 3648.
  • 9Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P 2003 Appl. Phys. Lett. 83 144.
  • 10Dong L E Jiao J, Tuggle D W, Petty J M, Elliff S A, Coulter M 2003 Appl. Phys. Lett. 82 1096.

共引文献107

同被引文献29

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部