期刊文献+

骨替代材料的研究方法及进展 被引量:8

Research methods and advances on bone substitute materials
下载PDF
导出
摘要 评述了骨替代材料的生物相容性.骨替代材料分为自体骨、异体骨和人工骨替代材料.指出成骨细胞MG-63、成纤维细胞3T3和骨髓瘤细胞U2OS是骨替代材料的主要生物环境,可作为研究骨替代材料生物相容性的常用细胞.骨替代材料生物相容性的评价方法主要有体内生物学研究和体外生物学研究.骨替代材料对所处的体内环境有重要影响,包括对细胞形态和对细胞功能的影响等.根据细胞形态特点(如细胞自溶变化、膜破裂和核聚变),可以判断材料的毒性程度,根据细胞功能(跨膜运输、细胞黏附、细胞增殖、周期、凋亡、氧化应激作用以及调节信号传导),可以判断生物材料的生物相容性. This paper reviews the biocompatibility of bone substitute materials classified as autologous bone, allograft bone and artificial bone substitutes. Osteoblasts MG-63, fibroblast 3T3, myeloma ceils U20S are the main biological environments of these biological materials. Therefore, these three kinds of cells are common cells for the biocompatibility research of bone substitute materials. The evaluations of the biocompatibility of bone substitute materials include in vitro and in vivo biologics. The artificial bone substitute materials have important effects on the in vivo environment. These effects include the impacts on cell morphology and cell function. The characteristics of the cell morphology such as cell autolysis changes, rupture of membranes, nuclear fusion can determine the toxicological grade of biomaterials. The cell functions including membrane transport, cell adhesion, cell proliferation, cell cycle, apoptosis, oxidative stress and regulating signal transduction can determine the biocompatibility.
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2015年第4期331-342,共12页 Journal of Shenzhen University(Science and Engineering)
基金 广东省教育厅科技创新资助项目(2013KJCX0163) 深圳大学应用技术开发资助项目(201223)~~
关键词 生物材料 复合材料 骨替代材料 生物相容性 人工骨材料 修复材料 biomaterials composite materials bone substitute materials bioeompatibility artificial bone material repair materials
  • 相关文献

参考文献34

  • 1倪卓,王应,刘士德,董慧恩,苏聪聪,刘学.聚醚醚酮/纳米羟基磷灰石生物材料对MG-63细胞增殖作用[J].生物骨科材料与临床研究,2013,10(3):46-49. 被引量:1
  • 2倪卓,华文语,王应,姜振华,梁翔禹,梁庆海.PEEK/HA生物复合材料的结晶动力学[J].高分子材料科学与工程,2013,29(2):74-77. 被引量:3
  • 3Landis W J, Song M J,Leith A, et aL Mineral andorganic matrix interaction in normally calcifying tendonvisualized in three dimensions by high-voltage electronmicroscopic tomography and graphic image reconstruction[J].Journal of Structure Biology, 1993,110 ( 1 ) : 39-54.
  • 4Cypher T J,Crossman J P. Biological principles of bonegraft healing [ J ].The Journal of Food and AnkleSurgery, 1996, 35(5) : 413-741.
  • 5Bonileld W, Wang M. Interfaces in analogue biomaterials[J] . Acta Materialia, 1998, 46(7) : 2509-2518.
  • 6Lin T,Corvelli A’ Frondoza C J, et al. Glass PEEKcomposite promotes proliferation and osteocalcin productionof human osteoblastic cells [ J ].Journal of BiomedicalMaterials Research, 1997, 36: 137-144.
  • 7Godara A, Raabe D,Green S, et al. The influence ofsterilization processes on the micromechanical properties ofcarbon fiber-reinforced PEEK composites for bone implantapplications [ J].Acta Biomater, 2007 , 3(2) : 209-220.
  • 8Bakar C K. Mechanical properties of injection moldedhydroxyapatite/polyetheretherketone biomaterials [ J ].Composites Science and Techology, 2003,63( 12) : 421 -425.
  • 9蔡卫全,马睿,翁履谦,宋申华,倪卓.原位聚合羟基磷灰石/聚醚醚酮复合材料[J].化工新型材料,2010,38(6):37-39. 被引量:9
  • 10冯惺,隋国鑫,杨锐.PEEK-HA-CF复合材料的力学性能和体外生物活性[J].材料研究学报,2008,22(1):18-25. 被引量:19

二级参考文献222

共引文献89

同被引文献67

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部