摘要
在物理中的某些量是不规则或不均匀的,求解时会出现困难。必须通过其他的方法进行简化,才能解决此类问题,本文主要介绍定积分常常能解决物理中一些实际问题的应用。首先介绍定积分的应用简述,其次定积分的定义,然后列出"微元法"在物理实际问题中的使用的条件,求解的过程以及注意的事项,最后列出四种相应的物理模型进一步分析说明此种应用。定积分解决实际问题的基本思想"分割——近似代替——求和——取极限",定积分实际上就是无穷多个"微元"累加求和,"微元求和"的思想,就是定积分的实质,这种解决问题的方法通常称为"微元法"。
出处
《学周刊(上旬)》
2015年第11期150-150,共1页
Learning Weekly