连续广义偏度量空间(英文)
Continuous generalized partial metric spaces
摘要
本文借助Yoneda嵌入引入了连续广义偏度量空间的概念.这类空间在广义偏度量空间里的作用类似于连续的定向完备偏序集在偏序集里的作用.然后本文证明了广义偏度量空间上的前向整体化函子和形式球函子保持连续性,并且形式球函子反射连续性.
The notion of continuous generalized partial metric space is introduced via the Yoneda embed- ding. Such spaces are the counterparts of continuous directed complete partially ordered sets in the realm of generalized partial metric spaces. It is shown that both the forward globalization functor and the for- mal ball functor on generalized partial metric spaces preserve continuity, and the formal ball functor also reflects continuity.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第4期703-709,共7页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11071174)
关键词
广义偏度量空间
平坦左模
伴随
Yoneda完备
Generalized partial metric space
Flat left module
Adjoint
Yoneda completeness
参考文献19
-
1Lawevere F W. Metric spaces, genetalized logic,and closed categories [J]. Rendiconti del Seminario Mat6matieo e Fisico di Milano, 1973, 43: 135.
-
2Aliakbari M, Honari B, Pourmahdian M, et al. The space of formal balls and models of quasi- metric spaces [J]. Mathematical Structures in Computer Science, 2009, 19: 337.
-
3Bonsangue M M, van Breugel F, Rutten J M. Generalized metric space: completion, topology, and powerdomains via the Yoneda embedding [J]. Theoretical Computer Science, 1998, 193: 1.
-
4Kostanek M, Waszkiewicz P. The formal ball model for Q-categories [J]. Mathematical Struc- tures in Computer Science, 2011, 21 : 41.
-
5Ktinzi H P A, Schellekens M P. On the Yoneda completion of a quasi-metric space [J]. Theoretical Computer Science, 2002, 278: 159.
-
6Rutten J M M. Weighted colimits and formal balls in generalized metric spaces [J]. Topology and its Applications, 1998, 89: 179.
-
7申力立,张德学.多值状态属性系统与闭包空间(英文)[J].四川大学学报(自然科学版),2012,49(4):735-739. 被引量:1
-
8Vickers S. Localic completion of generalized metric apaces [J]. Theory and Application of Categories, 2005, 14: 328.
-
9Wagner K R. Liminf convergence in --categories [ J]. Theoretical Computer Science, 1997, 184: 61.
-
10Matthews S G. Partial metric topology [J]. An- nals of New York Academy of Sciences, 1994,728 183.
二级参考文献22
-
1Edalat A, Heckmann R. A Computational model for metric spaces [J]. Theoretical Computer Science, 1998, 193: 53.
-
2Heckmann R. Approximation of metric spaces by partial metric spaces[J]. Applied Categorical Struttures, 1999, 7: 71.
-
3Belohlavek R. Fuzzy relational systems, foundations and principles[M]. NewYork: Kluwer Academic/ Plenum Publishers, 2002.
-
4Lai H, Zhang D. Complete and directed complete-Ω- categories[J]. Theoretical Computer Science, 2007, 388 :1.
-
5Lai H, Zhang D. Many-valued complete distributivity[EB/OL], arXiv: math. CT/0603590, 2006.
-
6Lai H, Zhang D. Fuzzy preorder and fuzzy topology [J]. Fuzzy Sets and Systems, 2006, 157: 1865.
-
7Lawvere F W. Metric spaces, generalized logic, and closed categories[J]. Rend Sem Mat Fis Milano, 1973, 41: 135.
-
8Stubbe I. Categorical structures enriched in a quantaloid: tensored and eotensored categories[J]. Theory and Applications of Categories, 2006, 16:283.
-
9Aerts D, Colebunders E, Van der Voorde A, et al. State property systems and closure spaces: a study of categorical equivalence [J]. International Journal of Theoretical Physics, 1999, 38: 359.
-
10Aerts D, Czachor M, Durt T. Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics [C]//Aerts D, Deses D. State property systems and closure spaces., extracting the classical and nonclassical parts. Singapore: World Scientific, 2002.