期刊文献+

蛋白质复合物组计算预测方法的研究与展望

Researchand Prospect of Computational Prediction Methods in Complexomes
原文传递
导出
摘要 当今系统生物学研究的重要课题之一就是蛋白质复合物组。对蛋白质复合物组中的蛋白质复合物及其相互作用进行全面、深入的研究,可以实现对蛋白复合物参与整个细胞生物进程的了解。近年来,大量从蛋白质组学数据中预测蛋白质复合物而得到复合物组网络表达的计算方法、计算模型已被开发出来,这类计算预测方法为生命活动的复杂规律研究提供了重要手段。现将蛋白质复合物组计算预测方法关于生物信息学的研究进步及在各研究领域的应用综述如下,并对其发展前景进行了展望。 One of the important hot topic in the field of systems biology is the complexomes. A comprehensive and in-depth research of protein complexes and its interactions of complexomes can a- chieve the understanding of protein complexes involved in the whole process of cell biology. In recent years, a large number of calculation methods and calculation models that predict protein complexes from proteomies data to obtain eomplexomes of network expression have been developed. The kind of computational prediction methods provide an important means for research of complex laws of life ac- tivities. This study reviewed the research progress of computational prediction methods of complex- omes in bioinformatics and its application to various research areas, and prospected the future of it.
出处 《医学分子生物学杂志》 CAS 2015年第4期243-247,共5页 Journal of Medical Molecular Biology
关键词 蛋白质复合物组 蛋白质复合物 蛋白质相互作用网络 计算预测方法 生物信息学 complexomes protein complexes the network of protein interactions computa-tional prediction methods bioinformatics
  • 相关文献

参考文献35

  • 1ALBERTS B. The cell as a collection of protein machines: preparing the next generation of molecular biologists[J] . Cell, 1998,92(3) :291-294.
  • 2LASSERREJ P, BEYNE E, PYNDIAH S, et aL A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis[J] . Electrophoresis ,2006 ,27 (16) :3306-3321.
  • 3GIBSON TJ. Cell regulation: determined to signal discrete cooperation[J] . Trends Biochem Sci, 2009 ,34 (10) : 471- 482.
  • 4V AN DONGEN S. Graph clustering via a discrete uncoupling process[J]. SIAMJ Matrix Analysis Applications, 2008,30(1) : 121-141.
  • 5COLLINS S R,KEMMEREN P,ZHAO X C,et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae[J]. Mol Cell Proteomics, 2007 , 6 (3) :439450.
  • 6WANG Y, QIAN X.Joint clustering of protein interaction networks through Markov random walk[J] . BMC Syst Biol,2014,8 (1) : S9.
  • 7GILLISJ, PA VLIDIS P. "Guilt by association" is the exception rather than the rule in gene networks[J]. PLoS Comput Biol,2012,8(3) ;1-13.
  • 8GUO Y, WEI X M, DASJ, et al. Dissecting diseaseinheritance modes in a three-dimensional protein network challenges the" Guilt-by-Association" principle[J]. AJHG, 2013,93(1) :78-89.
  • 9PAOLETTI A C,PARMELY TJ , TOMOMORI-SATO C,et al, Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors[J]. Proc Natl Acad Sci USA, 2006, 103 ( 50) : 18928-18933.
  • 10MCLLWAIN S,MATHEWS M,BEREMAN M S,et al. Estimating relative abundances of proteins from shotgun proteomics data[J]. BMC Bioinformatics ,2012,13 :308.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部